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Chapitre 9

Suites réelles

I Généralités
1. Définition d’une suite réelle

Une suite réelle est une application u : N Ñ R.
Pour n P N, le réel upnq est plutôt noté un. On dit que u est de terme général un. La suite u est aussi notée
punqnPN ou punqně0.

Définition - Suite réelle

Remarques.

– Comme ensemble d’applications, l’ensemble des suites réelles est noté RN.
– Il arrive qu’un suite u ne soit pas définie sur N tout entier, mais sur Jn0,`8J avec n0 P N. Dans ce cas, on note

la suite puqněn0
et on dit que un0

est le terme initial de la suite.

Nous allons voir qu’on peut introduire une suite de plusieurs manières distinctes, qu’il conviendra de bien différencier.

Suites définies explicitement

Définition explicite. La suite punqnPN est définie explicitement si son terme général est donné explicitement
en fonction de n. En d’autres termes, un “ fpnq, pour une fonction f explicite.

Lorsqu’une suite est définie de manière explicite, on a souvent directement accès à certaines de ses propriétés
grâce aux propriétés de la fonction f .

Exemple. Les suites
`?

n
˘

nPN,
`

p´1qn
˘

nPN sont définies explicitement.

Suites définies par récurrence

Définition par récurrence. La suite punqnPN est définie par :

– ses p premiers termes,
– une relation de récurrence qui exprime le terme un`p en fonction des p termes précédents.

Lorsqu’une suite est définie par récurrence, on ne peut calculer son terme de rang n qu’après avoir calculé tous
les termes précédents. On essaie alors dès que possible de trouver l’expression explicite de la suite.

Exemple. La suite de Fibonacci :
"

u0 “ 0, u1 “ 1
@n P N, un`2 “ un`1 ` un

Suites définies de manière implicite

Définition implicite. Le terme général un de la suite est défini comme l’unique solution d’une équation
dépendant de n.

Dans ce cas, on ne connaît pas explicitement la valeur de un, mais seulement une propriété qui caractérise un.

Exemple. Pour tout n P N, l’équation xn ` x ´ 1 “ 0 admet une unique solution dans r0, 1s, qu’on note un.
Démonstration. Soit n P N. La fonction fn : x ÞÑ xn ` x ´ 1 est continue, strictement croissante sur r0, 1s, et
on a fnp0q “ ´1 et fnp1q “ 1. Le théorème de la bijection assure alors que fn définit une bijection de r0, 1s

sur r´1, 1s. Par conséquent, il existe un unique réel dans r0, 1s, qu’on note un, tel que fnpunq “ 0.
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2. Suites majorées, minorées, bornées

Une suite réelle punqnPN est majorée (resp. minorée, resp. bornée), si l’ensemble tun, n P Nu de ses valeurs est
majoré (resp. minoré, resp. borné). En d’autres termes,

˛ punqnPN est majorée si : DM P R, @n P N, un ď M ,
˛ punqnPN est minorée si : Dm P R, @n P N, un ě m,
˛ punqnPN est bornée si : DK ě 0, @n P N, |un| ď K.

Définition - Suite majorée, minorée, bornée

Exemples. La suite
`

sinpnq
˘

nPN est bornée. La suite
`

p´1qnn
˘

nPN n’est ni majorée, ni minorée.

Propriété vraie à partir d’un certain rang. On dit qu’une suite punqnPN vérifie une propriété P à partir d’un
certain rang s’il existe N P N tel que punqněN vérifie la propriété P.

Exemple. Dire que la suite punqnPN est majorée par 1 à partir d’un certain rang signifie : DN P N, @n ě N, un ď 1.

Remarque. Une suite punqnPN est majorée si et seulement si elle est majorée à partir d’un certain rang. De même
pour les cas punqnPN minorée, ou punqnPN bornée.

Démonstration. il suffit de montrer que si punqnPN est majorée à partir d’un certain rang, alors elle est majorée.
On suppose que punqněN est majorée par M . On note ensuite M 1 “ maxtun, 0 ď n ă Nu. La suite punqnPN est
alors majorée par maxpM,M 1q, ce qui conclut.

3. Variations

Soit punqnPN une suite réelle. On dit que punqnPN est :

– croissante (resp. strictement croissante) si : @n P N, un`1 ě un (resp. un`1 ą un),
– croissante (resp. strictement croissante) si : @n P N, un`1 ď un (resp. un`1 ă un),
– monotone (resp. strictement monotone) si elle est croissante ou décroissante (resp. strictement croissante

ou strictement décroissante),
– stationnaire si elle est constante à partir d’un certain rang : DN P N, @n ě N, un`1 “ un.

Définition - Sens de variation

Exemples. La suite pp´3qnqnPN n’est pas monotone. La suite
`X

5
n

\˘

nPN est stationnaire.

Pour déterminer la monotonie d’une suite punqnPN, on peut :

– montrer que un`1 ´ un est de signe constant,
– si punqnPN est une suite à termes strictement positifs, comparer le quotient un`1

un
à 1,

– étudier la fonction f si pour tout n P N, un est donné par un “ fpnq.

Étude de la monotonie d’une suite

Cas d’une suite récurrente : @n P N, un`1 “ fpunq, f croissante œ punqnPN croissante !

f décroissante œ punqnPN décroissante !

II Limite d’une suite
Dans toute la suite, punqnPN désigne une suite réelle.

1. Définitions et premières propriétés

On dit qu’une suite réelle converge vers ℓ si tout voisinage de ℓ contient tous les réels un à partir d’un certain rang.
Ceci se récrit de la manière suivante.
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On dit que punqnPN converge vers un réel ℓ, ou a pour limite
ℓ, si

@ε ą 0, DN P N, @n ě N, |un ´ ℓ| ă ε.

Dans ce cas, on note un ÝÑ
nÑ`8

ℓ.

Si punqnPN ne converge pas vers une limite finie, on dit qu’elle
diverge.

Définition - Suite convergente

ℓ
ℓ ` ε

ℓ ´ ε

N

Remarque. On a un ÝÑ
nÑ`8

ℓ ô un ´ ℓ ÝÑ
nÑ`8

0 ô |un ´ ℓ| ÝÑ
nÑ`8

0.

Exemple. La suite
`

1
n

˘

ně1
tend vers 0.

Soit ε ą 0. On a
ˇ

ˇ

1
n

ˇ

ˇ ă ε ô n ą 1
ε .

Ainsi, si N “
X

1
ε

\

` 1, alors @n ě N, | 1n | ă ε.

ε

´ε N

Exercice 1. Montrer que si q Ps ´ 1, 1r, alors qn ÝÑ
nÑ`8

0.

Si ℓ P R et pvnqnPN est une suite telle que vn ÝÑ
nÑ`8

0 et |un´ ℓ| ď vn à partir d’un certain rang, alors un ÝÑ
nÑ`8

ℓ.

Théorème

Démonstration. Soient ε ą 0 et N P N tel que @n ě N, |vn| ă ε. Si N 1 P N est tel que @n ě N 1, |un ´ ℓ| ď vn, alors
en notant N2 “ maxpN,N 1q, on a : @n ě N2, |un ´ ℓ| ă ε, d’où un ÝÑ

nÑ`8
ℓ.

On dit que punqnPN a pour limite `8, et on note un ÝÑ
nÑ`8

`8, si

@A ą 0, DN P N, @n ě N, un ě A.

On dit que punqnPN a pour limite ´8, et on note un ÝÑ
nÑ`8

´8, si

@A ă 0, DN P N, @n ě N, un ď A.

Définition - Limite infinie

A

N

Exercice 2. Montrer que si q Ps1,`8r, alors qn ÝÑ
nÑ`8

`8.

Si punqnPN admet une limite ℓ P R, alors cette limite est unique, et on note lim
nÑ`8

un “ ℓ.

Théorème - Unicité de la limite

Démonstration. On traite le cas où ℓ P R : si la suite converge aussi vers ℓ1 P R avec ℓ1 ­“ ℓ, on choisit ε “
|ℓ´ℓ1|

2 .
Soient N,N 1 P N tels que @n ě N, |un´ℓ| ă ε et @n ě N 1, |un´ℓ1| ă ε.
Si on note N2 “ maxpN,N 1q, alors pour tout n ě N2, on a |un´ℓ1| ă ε,
donc

|un ´ ℓ| “ |un ´ ℓ ` pℓ ´ ℓ1q| ě |ℓ ´ ℓ1| ´ |un ´ ℓ1|

ą 2ε ´ ε “ ε,

ce qui est une contradiction. Ainsi, ℓ “ ℓ1.

ℓ

ℓ1

Si maintenant ℓ1 “ `8, on considère N1, N1 P N tels que @n ě N1, |un ´ ℓ| ă 1 et @n ě N2, un ą ℓ ` 1. On pose
N “ maxpN1, N2q. On a alors pour tout n ě N , un ă 1 ` ε et un ą ℓ ` 1, il y a contradiction. Les autres cas sont de
simples adaptations, et sont laissées en exercice.
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Toute suite convergente est bornée.
Théorème - Suite convergente, suite bornée

Démonstration. Supposons que punqn converge vers ℓ P R. Soit alors N P N tel que @n ě N, |un ´ ℓ| ď 1. Pour tout
entier n ě N , on a alors |un| “ |un ´ ℓ ` ℓ| ď |un ´ ℓ| ` |ℓ| ď 1 ` |ℓ|.
Ainsi, la suite punqn est bornée à partir du rang N , donc bornée.

La réciproque est fausse. Par exemple, si un “ p´1q
n pour tout n P N, alors la suite punqnPN est bornée, mais ne

converge pas.

2. Limites et opérations

Si les suites punqnPN et pvnqnPN admettent pour limites respectives ℓ, ℓ1 P R, alors

i. un ` vn ÝÑ
nÑ`8

ℓ ` ℓ1,

ii. unvn ÝÑ
nÑ`8

ℓℓ1, et en particulier, si λ P R, λun ÝÑ
nÑ`8

λℓ.

Ces résultats s’étendent au cas où ℓ, ℓ1 avec les opérations dans R, à l’exception des formes indéterminées
p`8q ` p´8q et 0 ˆ ˘8.

Théorème - Limites et somme, produit

Démonstration. On se contente de montrer le résultat lorsque ℓ, ℓ1 P R, les adaptations aux autres cas sont laissées
en exercice.

i. Soit ε ą 0. On considère des entiers N,N 1 tels que @n ě N, |un ´ ℓ| ă ε
2 et @n ě N 1, |vn ´ ℓ| ă ε

2 . Pour tout
n ě maxpN,N 1q, on a alors

|pun ` vnq ´ pℓ ` ℓ1q| “ |un ´ ℓ ` vn ´ ℓ1| ď |un ´ ℓ| ` |vn ´ ℓ1| ă ε
2 ` ε

2 “ ε.

Ceci montre que un ` vn ÝÑ
nÑ`8

ℓ ` ℓ1.

ii. Soit ε ą 0. La suite punqn étant bornée, on peut en considérer une borne K. On considère ensuite des entiers N,N 1

tels que @n ě N, |un ´ ℓ| ă ε
2p|ℓ1|`1q

et @n ě N 1, |vn ´ ℓ1| ă ε
2K . On remarque ensuite que si n ě maxpN,N 1q,

alors

|unvn ´ ℓℓ1| “ |unpvn ´ ℓ1q ` ℓ1pun ´ ℓq| ď |un| |vn ´ ℓ1| ` |ℓ1| |un ´ ℓ|

ď K ε
2K ` |ℓ1| ε

2p|ℓ1|`1q
ď ε.

Ceci montre que unvn ÝÑ
nÑ`8

ℓℓ1.

Remarque. Les cas dits indéterminés traduisent des situations où différents cas de figure peuvent se produire, on ne
peut donc pas statuer en général.

– Cas p`8q ` p´8q : par exemple, n ´ lnn ÝÑ
nÑ`8

`8, n ´ n2 ÝÑ
nÑ`8

´8, n ´ pn ` 1q ÝÑ
nÑ`8

1.

– Cas 0 ˆ p˘8q : par exemple, 1
n en ÝÑ

nÑ`8
`8, 1

n lnn ÝÑ
nÑ`8

0.

Le résultat qui suit fait appel à la notion de limite de fonction, que nous définirons prochainement dans le chapitre
Limites et continuité, il sera démontré à cette occasion.

Soient f : R Ñ R une fonction et ℓ, a P R. Si punqnPN ÝÑ
nÑ`8

a, on a :

si lim
xÑa

fpxq “ ℓ, alors lim
nÑ`8

fpunq “ ℓ.

En particulier, si f est continue en ℓ, alors fpunq ÝÑ
nÑ`8

fpℓq.

Théorème - Composition de limite
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On en déduit le résultat suivant.

Si punqnPN a pour limite ℓ P R et un ­“ 0 à partir d’un certain rang :

– si ℓ ­“ 0, alors 1
un

ÝÑ
nÑ`8

1
ℓ ,

– si un ÝÑ
nÑ`8

0 et un ą 0 à partir d’un certain rang, alors 1
un

ÝÑ
nÑ`8

`8,

– si un ÝÑ
nÑ`8

0 et un ă 0 à partir d’un certain rang, alors 1
un

ÝÑ
nÑ`8

´8.

Théorème - Limites et inverse

Remarques.

– On note parfois un Ñ ℓ` (resp. un Ñ ℓ´) lorsque un Ñ 0 et un ě ℓ (resp. un ď ℓ) à partir d’un certain rang.
On peut alors écrire dans le contexte ci-dessus : si un ÝÑ

nÑ`8
0`, alors 1

un
ÝÑ
nÑ`8

`8.

– Si ℓ “ 0 et un n’est pas de signe constant à partir d’un certain rang, la suite
´

1
un

¯

nPN
n’a pas de limite.

Voici trois cas où il est aisé de lever une indétermination dans un calcul de limite.

– Utilisation des croissances comparées. Si α, β, γ P R‹
`, on a

lim
nÑ`8

plnnqα

nβ
“ 0, lim

nÑ`8

nβ

eγn
“ 0, lim

nÑ`8

eγn

n!
“ 0.

Les deux premiers résultats proviennent des résultats de croissances comparées vues dans le chapitre Rap-
pels et compléments sur les fonctions réelles, le dernier sera montré plus loin dans ce chapitre.
On peut donc directement conclure lorsqu’on est confronté à l’une des formes indéterminées ci-dessus.

– Utilisation de la quantité conjuguée. Pour calculer la limite indéterminée d’une suite de la forme
pun ´ vnqn où punqn et pvnqn sont des suites strictement positives, on peut écrire :

un ´ vn “
pun ´ vnqpun ` vnq

un ` vn
“

u2
n ´ v2n

un ` vn
.

Si la limite limu2
n ´ v2n n’est pas indéterminée, on peut parfois conclure.

Exemple. Si un “ n
´

b

1 ` 1
n ´ 1

¯

pour tout n P N‹, alors on a

un “ n

´
b

1 ` 1
n ´ 1

¯ ´
b

1 ` 1
n ` 1

¯

b

1 ` 1
n ` 1

“ n
1 ` 1

n ´ 1
b

1 ` 1
n ` 1

“
1

b

1 ` 1
n ` 1

, donc un ÝÑ
nÑ`8

1

2
.

– Utilisation du nombre dérivé. Si une fonction réelle f est dérivable en un point a et phnqn est une suite
qui converge vers 0, alors

comme fpa ` hq ´ fpaq

h
ÝÑ
nÑ`8

f 1paq, on a fpa ` hnq ´ fpaq

hn
ÝÑ
nÑ8

f 1paq.

Exemple. On retrouve la limite de l’exemple précédent : si f : x P R` ÞÑ
?
x, alors

un “
f

`

1 ` 1
n

˘

´ fp1q
1
n

, donc un ÝÑ
nÑ`8

f 1p1q “
1

2
.

Un principe pour la gestion de formes indéterminées qu’on ne sait pas gérer est de factoriser les sommes de termes
par leur terme dominant, de manière à faire apparaître des termes ayant une limite nulle.

Gestion de certaines formes indéterminées
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3. Limites et inégalités

Comme nous allons le voir, le résultat suivant est une conséquence directe de la définition de la notion de limite.

Si un ÝÑ
nÑ`8

ℓ P R et m,M P R, alors :

– si m ă ℓ, alors un ą m à partir d’un certain rang,
– si ℓ ă M , alors un ă M à partir d’un certain rang.

Théorème - Limites et inégalités strictes

Démonstration. Montrons le premier point, le second étant analogue.

– Cas un ÝÑ
nÑ8

ℓ ą m. Soit ε “ ℓ ´ m. On considère N P N tel que @n ě N, |un ´ ℓ| ă ε. Ainsi, si n ě N ,
on a un ´ ℓ ą ´ε “ m ´ ℓ, donc un ą m.

– Cas un ÝÑ
nÑ8

`8. par définition, il existe N tel que @n ě N, un ą m.

Remarque. En particulier, si un ÝÑ
nÑ`8

ℓ ą 0, la suite punqnPN est strictement positive à partir d’un certain rang.

Le résultat devient faux si l’inégalité est large. Par exemple : si un “ ´ 1
n pour tout n P N‹, alors un ÝÑ

nÑ8
ℓ avec

ℓ “ 0. On a ℓ ě 0, mais on n’a pas un ě 0 à partir d’un certain rang.

Si punqnPN et pvnqnPN sont deux suites admettant une limite et un ď vn à partir d’un certain rang, alors

lim
nÑ`8

un ď lim
nÑ`8

vn.

Théorème - Passage à la limite dans les inégalités larges

Démonstration. On note ℓ et ℓ1 les limites respectives des suites punqn et pvnqn. On raisonne par l’absurde et on
suppose que ℓ ą ℓ1. On en déduit alors que la suite pun ´ vnqn a pour limite ℓ ´ ℓ1 ą 0. Le théorème précédent assure
alors qu’à partir d’un certain rang, on a un ´ vn ą 0, ce qui est une contradiction.

Le résultat devient faux pour les inégalités strictes.

Par exemple, si un “ 0 et vn “ 1
n , on a un ă vn pour tout n P N‹, mais lim

nÑ`8
un “ lim

nÑ`8
vn “ 0.

Si un ă vn à partir d’un certain rang, on peut bien sûr dire que ℓ ď ℓ1, mais pas ℓ ă ℓ1. On retiendra que

les inégalités strictes deviennent larges à la limite

4. Théorèmes d’existence de limite

Les théorèmes suivants permettent de démontrer l’existence d’une limite d’une suite réelle dans des cas particuliers.

a. Encadrement, minoration, majoration

Si punqnPN, pvnqnPN, pwnqnPN sont trois suites réelles et ℓ P R, alors on a les propriétés suivantes.

– Encadrement : si vn ď un ď wn à partir d’un certain rang et vn ÝÑ
nÑ`8

ℓ, wn ÝÑ
nÑ`8

ℓ, alors un ÝÑ
nÑ`8

ℓ.

– Minoration : si vn ď un à partir d’un certain rang et vn ÝÑ
nÑ`8

`8, alors un ÝÑ
nÑ`8

`8.

– Majoration : si un ď vn à partir d’un certain rang et vn ÝÑ
nÑ`8

´8, alors vn ÝÑ
nÑ`8

´8.

Théorème - Encadrement, comparaison
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Démonstration.

– On suppose qu’à partir du rang N0, on a vn ď un ď wn.
Si on fixe ε ą 0, on sait qu’à partir d’un certain rang N1,
on a vn ą ℓ ´ ε, et à partir d’un certain rang N2, on a
wn ă ℓ ` ε.
On pose N “ maxpN0, N1, N2q. Ainsi, pour tout n ě N ,
on a ℓ ´ ε ă vn ď un ď wn ă ℓ ` ε, donc |un ´ ℓ| ă ε.
Ainsi, on a donc bien un ÝÑ

nÑ`8
ℓ.

ℓ

ℓ ´ ε

ℓ ` ε

N

wnunvn

– On se contente de montrer le résultat de minoration : soit A ą 0. On sait qu’à partir d’un certain rang N0 on a
vn ď un, et à partir d’un certain rang N1, on a vn ą A. Ainsi, pour tout n ě maxpN0, N1q, on a un ě vn ą A,
donc un ÝÑ

nÑ`8
8.

Remarque. Une conséquence souvent utile est que si un ÝÑ
nÑ`8

0 et pvnqnPN est bornée, alors unvn ÝÑ
nÑ`8

0.

Démonstration. En effet, soit M tel que pour tout n P N, |vn| ď M , on a alors pour tout n P N,

|unvn| ď M |un| ÝÑ
nÑ`8

0.

Ainsi, unvn ÝÑ
nÑ`8

0.

Exercice 3. Déterminer la limite de la suite punq dans chacun des cas suivants.

1. @n P N, un “
sinn

n ` 1
, 2. @n P N, un “

2n
ÿ

k“n`1

1

k2
, 3. @n P N, un “ 2 `

p´1qn
?
n

n ` 1
.

Exemple. Règle de d’Alembert pour les suites. Soit punqnPN strictement positive telle que un`1

un
ÝÑ
nÑ`8

ℓ. Alors
– si ℓ ă 1, alors un ÝÑ

nÑ`8
0,

– si ℓ ą 1, alors un ÝÑ
nÑ`8

`8.

Démonstration. Si ℓ ă 1, on considère q tel que ℓ ă q ă 1. On sait qu’il existe un rang N à partir duquel
un`1

un
ă q. Ainsi, si n ě N , alors par télescopage,

un
uN

“

n´1
ź

k“N

uk`1

uk
ă

n´1
ź

k“N

q “ qn´N , donc 0 ă un ă
uN
qN

qn.

Comme qn ÝÑ
nÑ`8

0, on a par encadrement un ÝÑ
nÑ`8

0. Le cas ℓ ą 1 est analogue.

Plus généralement, si punqnPN et pvnqnPN sont deux suites strictement positives, telles que un`1

un
ď

vn`1

vn
à partir d’un

certain rang N , le même télescopage donne : un ď uN

vN
vn pour tout n ě N , ce qui permet d’utiliser directement les

théorèmes de minoration ou majoration.

Pour tout x P R, on a xn

n!
ÝÑ
nÑ`8

0.

Théorème - Croissance comparée de l’exponentielle et la factorielle

Remarque. On retrouve donc le résultat de croissance comparée énoncé plus haut : pour tout γ P R, eγn

n! ÝÑ
nÑ`8

0.

Démonstration. Si x “ 0, le résultat est clair. Sinon, en notant un “
|x|n

n! pour tout n P N, on a un`1

un
“

|x|

n`1 , ce qui
entraîne que un`1

un
ÝÑ
nÑ`8

0, donc un ÝÑ
nÑ`8

0 par la règle de d’Alembert.
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b. Théorème de la limite monotone

Soit punqn une suite réelle.

˛ Si punqn est croissante, alors : – si punqn est majorée, alors elle converge vers sup tun, n P Nu,
– si punqn n’est pas majorée, alors elle diverge vers `8.

Dans le cas où un ÝÑ
nÑ`8

ℓ P R, on a ℓ “ sup tun, n P Nu, et donc un ď ℓ pour tout n P N.

˛ Si punqn est décroissante, alors : – si punqn est minorée, alors elle converge vers inf tun, n P Nu,
– si punqn n’est pas minorée, alors elle diverge vers ´8.

Dans le cas où un ÝÑ
nÑ`8

ℓ P R, on a ℓ “ inf tun, n P Nu, et donc un ě ℓ pour tout n P N.

Théorème - Théorème de la limite monotone

Démonstration. On se contente de montrer le premier point, le second étant similaire.

– Supposons que punqnPN est majorée. Notons ℓ “ sup tun, n P Nu et fixons ε ą 0. On sait qu’il existe N P N tel
que uN ą ℓ´ε. Ainsi, pour tout n ě N , on a ℓ´ε ă uN ď un ď ℓ par croissance de la suite punqn. Ceci entraîne
que |un ´ ℓ| ă ε. On a donc montré que un ÝÑ

nÑ`8
ℓ.

– Supposons que punqnPN n’est pas majorée et fixons A ą 0. Comme A n’est pas un majorant de tun, n P Nu, il
existe N P N tel que uN ą A. Par croissance, on a alors un ą A pour tout n ě N , donc un ÝÑ

nÑ`8
`8.

Remarques.

– Une suite monotone admet donc toujours une limite dans R.

– Si une suite est monotone à partir d’un certain rang, le résultat du théorème est toujours valable.

– Si punqnPN est une suite positive et
Sn “

n
ÿ

k“0

uk

pour tout n P N, alors la suite pSnqnPN est croissante, donc converge si elle est majorée, et diverge vers `8 sinon.

c. Théorème des suites adjacentes

On dit que deux suites punqnPN et pvnqnPN sont adjacentes si :

‹ les suites punqnPN et pvnqnPN sont monotones, de monotonies opposées,

‹ lim
nÑ`8

vn ´ un “ 0.

Définition - Suites adjacentes

Le théorème suivant, qui est une conséquence du théorème de la limite monotone, assure que deux suites adjacentes
sont toutous convergentes, de même limite, et fournit un encadrement souvent très utile.

Si punqnPN et pvnqnPN sont deux suites adjacentes, alors :

i. les suites punqn et pvnqn convergent vers une même limite ℓ finie,
ii. si punqn est croissante et pvnqn décroissante, alors un ď ℓ ď vn pour tout n P N.

Théorème - Théorème des suites adjacentes

Démonstration. On suppose que punqn est croissante et pvnqn décroissante. On remarque que pour tout n P N, on a
vn`1 ´ un`1 ď vn ´ un, donc la suite pvn ´ unqnPN est décroissante et converge vers 0, donc elle est positive. On a
donc bien un ď vn pour tout n P N. Ainsi,

– pour tout n P N, un ď vn ď v0 par décroissance de pvnqn, donc la suite punqn est croissante et majorée par v0,
elle converge alors vers un réel noté ℓ par le théorème de la limite monotone,

– pour tout n P N, vn ě un ě u0, donc la suite pvnqn est décroissante et minorée, elle converge alors vers un réel
noté ℓ1.
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Par conséquent, la suite pvn ´ unqn converge vers ℓ1 ´ℓ. D’après la définition des suites adjacentes, on a alors ℓ1 ´ℓ “ 0,
soit ℓ “ ℓ1. Finalement, on a bien montré que les deux suites convergent vers la même limite ℓ.
La croissance de punqn et la décroissance de pvnqn entraînent donc bien que pour tout n P N, on a un ď ℓ et vn ě ℓ.

Exemple. Si pour tout n P N‹, un “
n
ř

k“0

1

k!
et vn “ un `

1

n n!
, les suites punqnPN‹ et pvnqnPN‹ sont adjacentes.

– Pour n P N, on a :

vn`1 ´ vn “
1

pn ` 1q!
`

1

pn ` 1qpn ` 1q!
´

1

nn!
“

npn ` 1q ` n ´ pn ` 1q2

npn ` 1qpn ` 1q!
“

´1

npn ` 1qpn ` 1q!
ă 0,

et un`1 ´ un “ 1
n!

ą 0, donc punqnPN‹ est croissante, et pvnqnPN‹ est décroissante.

– Pour tout n P N‹, on a vn ´ un “ 1
nn!

, donc lim
nÑ`8

vn ´ un “ 0.

Les suites punqn et pvnqn sont donc adjacentes, et le théorème des suites adjacentes affirme qu’elles convergent donc
toutes deux vers la même limite.

5. Caractérisations séquentielles

Soit A une partie non vide de R.

– Si A est majorée, alors

M “ supA ô

"

M est un majorant de A,
il existe une suite d’éléments de A qui converge vers M .

– A n’est pas majorée si et seulement s’il existe une suite d’éléments de A qui diverge vers `8.

Le cas de la borne inférieure est analogue.

Théorème - Caractérisation séquentielle des bornes supérieure et inférieure

Remarque. On a : ˛ M est un majorant de A ô supA ď M

˛ il existe une suite d’éléments de A qui converge vers M ô supA ě M.

Démonstration.

– Supposons que M “ supA. On sait alors que M est un majorant de A. Par ailleurs, pour tout n P N‹, il existe
xn P A tel que xn ą M ´ 1

n , donc M ´ 1
n ă xn ď M . On déduit par encadrement que xn ÝÑ

nÑ`8
M .

Réciproquement, si pxnqn est une suite de A qui converge vers un majorant M de A. On considère un autre
majorant de A, noté M 1. Comme pour tout n, xn ď M 1, on déduit par passage à la limite que M ď M 1.
Finalement, M est le plus petit majorant de A, donc M “ supA.

– Il est clair que s’il existe une suite d’éléments de A qui diverge vers `8, alors A n’est pas majoré. Supposons
maintenant que A n’est pas majoré. Par conséquent, pour tout n P N, n n’est pas un majorant de A, donc il
existe xn P A tel que xn ą n. Par minoration, on déduit alors que xn ÝÑ

nÑ`8
`8.

Exercice 4. Soient A,B des parties non vides et majorées de R. Montrer que l’ensemble A`B “ tx`y, x P A, y P Bu

admet une borne supérieure, et suppA ` Bq “ supA ` supB.

Une partie A de R est dense dans R si et seulement si tout élément de R est limite d’une suite d’éléments de A.
Théorème - Caractérisation séquentielle de la densité

Rappel. D’après la caractérisation de la densité vue au chapitre Compléments sur les nombres réels, A est
dense dans R si et seulement si @x P R, @ε ą 0, Da P A, |x ´ a| ď ε.

Démonstration.

– Si A est dense dans R et x P R, on sait que pour tout n P N‹, il existe xn P A tel que |xn ´x| ă 1
n . Ceci entraîne

que xn ÝÑ
nÑ`8

x.

– Supposons que pour tout x P R, il existe une suite de A qui converge vers x. Fixons x P R et ε ą 0. Si pxnqnPN
est une suite de A qui converge vers x, il existe N P N tel que |xN ´ x| ă ε. Ceci conclut car xN P A.
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Remarque. La densité de Q dans R entraîne donc que pour tout réel x, il existe une suite pqnqnPN de rationnels telle
que qn ÝÑ

nÑ`8
x.

Soit A une partie de R. On dit que x P R est un point adhérent à A s’il existe une suite pxnqnPN de A qui converge
vers x.
On appelle adhérence de A l’ensemble des points adhérents à A.

Définition - Point adhérent à une partie, adhérence

Remarques.

– On note souvent A l’adhérence de A (attention de ne pas confondre avec le complémentaire). On a bien sûr
A Ă A.

– On remarque que “A est dense dans R” se récrit alors simplement : A “ R.

III Suites extraites

Si φ : N Ñ N est strictement croissante, on dit que φ est une extractrice, et que la suite puφpnqqnPN est une suite
extraite, ou sous-suite de punqnPN.
Si punqnPN a une sous-suite qui converge vers un réel ℓ, on dit que ℓ est une valeur d’adhérence de la suite punqnPN.

Définition - Extractrice, suite extraite, valeur d’adhérence

Remarques.

– La suite extraite puφpnqq
nPN n’est autre que l’application u ˝ φ : N Ñ R.

– Par stricte croissance de φ, on a φpnq ě n pour tout n P N.

Exemples.

– La suite psinpn2qqnPN est une suite extraite de psinnqnPN, d’extractrice φ : n ÞÑ n2.
– Si un “ p´1qn pour tout n P N, la suite punqnPN admet 1 et ´1 pour valeurs d’adhérence : ce sont les limites

respectives des sous-suites pu2nqnPN et pu2n`1qnPN.

Si punqnPN admet ℓ P R pour limite, alors toutes ses suites extraites admettent la même limite.

Théorème

Démonstration. On écrit la preuve pour ℓ P R, on adapte aisément aux autres cas. On considère une sous-suite
puφpnqq

nPN de punqnPN. Soit ε ą 0, on sait qu’il existe N P N tel que @n ě N, |un ´ ℓ| ă ε. Ainsi, pour tout n ě N , on
a φpnq ě n ě N , donc on a aussi |uφpnq ´ ℓ| ă ε, d’où uφpnq ÝÑ

nÑ`8
ℓ.

Remarque. En particulier, si punqnPN admet une sous-suite qui n’a pas de limite, ou deux sous-suites ayant des limites
distinctes, alors la suite punqnPN n’a pas de limite.

Exemple. Si un “ p´1qn pour tout n P N, alors u2n ÝÑ
nÑ`8

1 et u2n`1 ÝÑ
nÑ`8

´1, donc pp´1qnqnPN n’a pas de limite.

Si les suites extraites pu2nqnPN et pu2n`1qnPN admettent la même limite ℓ P R, alors un ÝÑ
nÑ`8

ℓ.

Théorème

Démonstration. On traite le cas ℓ P R. Soit ε ą 0. On considère des entiers N1, N2 tels que @k ě N1, |u2k ´ ℓ| ă ε et
@k ě N2, |u2k`1 ´ ℓ| ă ε. On pose N “ maxp2N1, 2N2q et on fixe n ě N .

– Si n est pair, alors on peut écrire n “ 2k où k est un entier tel que k ě N1, d’où |un ´ ℓ| “ |u2k ´ ℓ| ă ε.
– Si n est impair, alors on peut écrire n “ 2k` 1 où k est un entier tel que k ě N2, d’où |un ´ ℓ| “ |u2k`1 ´ ℓ| ă ε.

Ainsi, on a montré @n ě N, |un ´ ℓ| ă ε, ce qui conclut.
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Remarque. De même, si les suites pu3nqnPN, pu3n`1qnPN et pu3n`2qnPN ont la même limite ℓ P R, alors un ÝÑ
nÑ`8

ℓ.

Le résultat suivant d’avère pratique pour caractériser le caractère non majoré ou le fait qu’une suite ne diverge par
vers `8 en terme de sous-suite.

(i) La suite punqnPN est non majorée si et seulement si elle possède une sous-suite qui tend vers `8.
(ii) La suite punqnPN ne tend pas vers `8 si et seulement si elle possède une sous-suite bornée.

Théorème

Démonstration.

(i) Supposons que punqnPN est non majorée, c’est-à-dire @M P R, Dk P N, uk ě M , et construisons par récurrence
une extractrice φ telle que uφpnq ÝÑ

nÑ`8
`8.

˛ On sait qu’il existe un entier k tel que uk ě 0, on pose alors φp0q “ 0, de sorte que uφp0q ě 0.
˛ Soit n P N. On suppose φpnq construit tel que uφpnq ě 0. On a l’existence d’un entier k ą φpnq tel que
uk ě n ` 1. En effet, sinon pour tout k ą φpnq, on a uk ă n ` 1, donc la suite est majorée. On pose alors
φpn ` 1q “ k, ce qui assure que φpn ` 1q ą φpnq et uφpn`1q ě n ` 1.

Comme pour tout n P N, uφpnq ě n, on a uφpnq ÝÑ
nÑ`8

`8 par majoration.

(ii) Ce point se démontre d’une manière similaire, et est laissé en exercice.

Le théorème suivant est l’un des théorèmes principaux que nous verrons cette année. Il permettra en particulier de
montrer que toute fonction continue sur un segmente est bornée et atteint ses bornes.

Toute suite réelle bornée a une sous-suite convergente.
Théorème - Théorème de Bolzano-Weierstrass

Démonstration. Soit punqnPN une suite réelle bornée dont considère un minorant a et un majorant b. Nous allons
construire par récurrence des suites panqnPN et pbnqnPN telles que pour tout n P N, bn ´ an ď 1

2n pb ´ aq et l’ensemble
tk P N, an ď uk ď bnu est infini (en d’autres termes, l’intervalle ran, bns contient une infinité de termes de la suite).

– On pose a0 “ a et b0 “ b. On a bien b0 ´ a0 “ b ´ a et comme ra0, b0s contient tous les terme de la suite,
l’ensemble tk P N, a0 ď uk ď b0u est infini.

– Soit n P N. On suppose que les réels an et bn sont tels que l’ensemble tk P N, an ď uk ď bnu soit infini et
bn ´ an “ 1

2n pb ´ aq. On note ensuite mn “ an`bn
2 .

˛ Si tk P N, an ď uk ď mnu est infini, on pose an`1 “ an et bn`1 “ mn. Alors tk P N, an`1 ď uk ď bn`1u

est infini, et bn`1 ´ an`1 “ 1
2 pbn ´ anq “ 1

2n`1 pb ´ aq.
˛ Sinon, tk P N, mn ď uk ď bnu est infini, et on pose an`1 “ mn et bn`1 “ bn. On a alors les mêmes

conséquences que ci-dessus.

Par construction, les suites panqnPN est croissante et pbnqnPN est décroissante. Comme de plus bn ´ an ď 1
2n pb ´ aq

pour tout n P N, les deux suites sont adjacentes, et convergent donc vers une même limite ℓ.
On construit ensuite l’extractrice φ par récurrence de la manière suivante.

˛ On pose φp0q “ 0.
˛ On suppose φpnq créé, et on définit φpn ` 1q comme le plus petit entier k ą φpnq tel que an`1 ď k ď bn`1.

Comme tk ą N, an`1 ď uk ď bn`1u est infini, l’existence de cet entier est assurée.

Comme pour tout n P N, on a an ď uφpnq ď bn, on en déduit par comparaison que uφpnq ÝÑ
nÑ`8

ℓ.

Remarque. On peut reformuler le théorème de Bolzano-Weierstrass de la manière suivante : toute suite réelle bornée
admet une valeur d’adhérence.

IV Suites récurrentes
Nous allons étudier ici les suites qui vérifient une relation de récurrence du type : @n P N, un`1 “ fpunq, où f est une
fonction fixée.
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Soit f P F pE,Rq on dit qu’une partie A de E est stable par f si @x P A, fpxq P A. En d’autres termes, fpAq Ă A.
Définition - Ensemble stable par une fonction

La preuve du résultat suivant repose directement sur le principe de récurrence.

Soient f : E Ñ R une fonction réelle, I un intervalle stable par f et a P I. Il existe une unique suite punqnPN telle
que "

u0 “ a,
un`1 “ fpunq

(R)

De plus, pour tout n P N, on a un P I.

Définition-théorème - Suites récurrentes

Remarques.

– Il est crucial que I soit stable par f pour que l’on puisse définir la suite punqnPN comme ci-dessus : il faut pouvoir
assurer que pour chaque n P N, fpunq est bien défini.

– Si l’intervalle I est minoré et/ou majoré, la stabilité de f fournit directement un minorant et/ou un majorant
de la suite punqnPN.

– Dans la relation de récurrence qui définit f , il est crucial que f ne dépende pas de n : la suite définie par
u0 “ 0 et @n P N, un`1 “ 1 ` un

n`1 n’est pas une suite récurrente.

Exemple. La suite définie par u0 P r0, 1s et @n P N, un`1 “
1

un ` 1
est bien définie et bornée.

En effet, soit la fonction f : x ÞÑ 1
x`1

. L’ensemble r0, 1s est stable par f , donc la suite est bien définie, et pour tout
n P N, 0 ď un ď 1.

Si f est monotone sur l’intervalle I, la suite punqnPN n’est pas nécessairement monotone de même monotonie. Par
exemple, si u0 “ 1 et @n P N, un`1 “ 1

2un, la suite punqnPN est strictement décroissante, mais la fonction x ÞÑ 1
2x

est croissante.
On peut en revanche obtenir la monotonie de la suite définie par (R) si la fonction x ÞÑ fpxq ´ x ne change pas de
signe sur l’intervalle stable I.

Soient f : E Ñ R et I Ă E un intervalle stable par f . On considère une suite punqnPN telle que u0 P I et
@n P N, un`1 “ fpunq.

– Si x ÞÑ fpxq ´ x est positive sur I, alors la suite punqnPN est croissante.
– Si x ÞÑ fpxq ´ x est négative sur I, alors la suite punqnPN est décroissante.

Théorème - Monotonie d’une suite récurrente

Démonstration. Traitons le cas où φ : x ÞÑ fpxq ´ x est positive sur I, c’est-à-dire que pour tout x P I, fpxq ě x.
Pour tout n P N, on a alors un`1 “ fpunq ě un, d’où la croissance de la suite.

Comme on l’a vu, la monotonie de la fonction f ne donne pas directement la monotonie de la suite récurrente, mais
elle donne une information sur le comportement de la suite.

Soient f : E Ñ R et I Ă E un intervalle stable par f . On considère une suite punqnPN telle que u0 P I et
@n P N, un`1 “ fpunq.

– Si f est croissante sur I, alors la suite punqnPN est monotone.
– Si f est décroissante sur I, alors les suites pu2nqnPN et pu2n`1qnPN sont monotones, de monotonies opposées.

Théorème - Monotonie d’une suite récurrente (2)

Remarque. Dans le premier cas, on peut aisément déterminer la monotonie de punqnPN en comparant u0 et u1. Dans
le second cas, il suffit de comparer u0 et u2.
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Démonstration.

– Supposons que u1 ě u0 (l’autre cas est identique). Montrons par récurrence que pour tout n P N, un`1 ě un.
L’initialisation est déjà faite. Fixons n P N et supposons que un`1 ě un. On a fpun`1q ě fpunq par croissance
de f , c’est-à-dire un`2 ě un`1, ce qui achève la récurrence.

– Il suffit de remarquer que la fonction f ˝ f est croissante, et que la suite pu2nqnPN est la suite récurrente de
premier terme u0 associée à la fonction f ˝ f , donc elle est monotone par le point précédent. Ensuite, pour tout
n P N, u2n`3 ´ u2n`1 “ fpu2n`2q ´ fpu2nq, donc par décroissance de f sur I, u2n`3 ´ u2n`1 et u2n`2 ´ u2n sont
de signes opposés.

Dans les deux résultats précédents sur la monotonie des suites récurrentes, il est crucial d’étudier la monotonie
de f ou de x ÞÑ fpxq ´ x sur un intervalle stable par f , sans quoi on ne peut rien déduire sur la suite.

Soient f : E Ñ R et I Ă E un intervalle stable par f . On considère une suite punqnPN telle que u0 P I et
@n P N, un`1 “ fpunq. Si un ÝÑ

nÑ`8
ℓ P I et f est continue en ℓ, alors ℓ est un point fixe de f : fpℓq “ ℓ.

Théorème - Limite d’une suite récurrente et point fixe

Démonstration. Comme un ÝÑ
nÑ`8

ℓ, on a : ˛ un`1 “ fpunq ÝÑ
nÑ`8

fpℓq par continuité de f

˛ un`1 ÝÑ
nÑ`8

ℓ.

Ainsi, par unicité de la limite, on a fpℓq “ ℓ.

Remarques.

– Si punqnPN est une suite récurrente comme ci-dessus telle que f est continue sur I, alors la recherche de ses points
fixes sur I permet de lister toutes les valeurs possibles d’une éventuelle limite de punqnPN.

– Comme on l’a vu, l’étude de la fonction x ÞÑ fpxq ´ x permet de conclure sur les variations de la suite punqnPN,
les zéros de φ sur I donnent par ailleurs les points fixes de f , donc les limites éventuelles de la suite.

Exemple. On considère la suite punqnPN définie par :
"

u0 P r1,`8r,
@n P N, un`1 “ 1 ` lnx

– La suite punqnPN est bien définie : l’intervalle r1,`8r est stable par la fonction f : x ÞÑ 1` lnx, qui est croissante
et vérifie fp1q “ 1. On a de plus pour tout n P N, un ě 1.

– La fonction φ : x ÞÑ fpxq ´ x est dérivable sur r1,`8r, et pour tout x Ps1,`8r, on a φ1pxq “ 1
x ´ 1 ď 0, donc

φ est strictement décroissante sur r1,`8r. Comme φp0q “ 0, on en déduit que φ est négative sur r1,`8r, et
l’unique point fixe de f sur r1,`8r est 1.
Par conséquent, la suite punqnPN est décroissante et minorée par 1, donc elle converge. Comme 1 est l’unique
point fixe de f sur r1,`8r, on a un ÝÑ

nÑ`8
1.

V Extension au cas complexe
On étend l’étude précédente au cas des suites complexes, c’est-à-dire des suites à valeurs dans C. Il s’agit des applica-
tions de N dans C. On note alors CN l’ensemble des suites complexes.
Pour toute suite complexe u, on a les suites réelles :

˛ Reu, de terme général pReuqn “ Repunq, ˛ ū de terme général pūqn “ un,
˛ Imu, de terme général pImuqn “ Impunq ˛ |u|, de terme général |u|n “ |un|.

On dit qu’une suite complexe punqnPN est bornée s’il existe M P R` tel que pour tout n P N, |un| ď M .
Définition - Suite complexe bornée

Une suite complexe u est bornée si et seulement si les suites réelles Reu et Imu sont bornées.
Théorème - Suite bornée, partie réelle, partie imaginaire
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Démonstration.

– Si u est bornée par M , alors pour tout n, |Reun| ď |un| ď M , et | Imun| ď |un| ď M , donc Reu et Imu sont
bornées.

– Si Reu et Imu sont bornées, respectivement par M et M 1, alors |un|2 “ pReunq2 ` pImunq2 ď M2 `M 12 pour
tout n P N, donc |un| ď

?
M2 ` M 12, et u est bornée.

On dit que la suite complexe u converge vers ℓ P C si @ε ą 0, DN P N, @n ě N, |un ´ ℓ| ă ε.
Définition - Suite complexe convergente

Si u est une suite complexe, on a toujours le résultat de majoration : s’il existe une suite réelle v telle que

˛ |un ´ ℓ| ď vn à partir d’un certain rang
˛ vn ÝÑ

nÑ`8
0,

alors un ÝÑ
nÑ`8

ℓ.

Exemple. La suite punqnPN définie par : @n P N, un “ einθ

n converge vers 0. En effet, on a |un| “ 1
n ÝÑ
nÑ`8

0.

Soient u une suite complexe et ℓ P C. On a

un ÝÑ
nÑ`8

ℓ ô

#

Reun ÝÑ
nÑ`8

Re ℓ,

Imun ÝÑ
nÑ`8

Im ℓ.

Théorème - Convergence et partie réelle, partie imaginaire

Démonstration. Il suffit de constater que pour tout n P N, |un ´ ℓ|2 “ |Reun ´ Re ℓ|2 ` |Imun ´ ℓ|2.

Remarque. Toutes les propriétés n’utilisant pas d’inégalité dans le cas réel sont encore vraies dans le cadre complexe,
car les démonstrations reposent sur l’utilisation de l’inégalité triangulaire.
En particulier, une suite complexe convergente est bornée, il y a unicité de la limite, et les théorèmes sur les opérations
sont encore valables. En revanche, les théorèmes d’existence ne sont plus valables.
Nous allons voir par ailleurs que le théorème de Bolzano-Weierstrass est toujours vrai dans ce cadre.

Toute suite complexe bornée a une sous-suite convergente.
Théorème - Théorème de Bolzano-Weierstrass, cas complexe

Démonstration. Pour tout n P N, on note an “ Reun et bn “ Imun. Comme pour tout n P N, on a |Reun| ď |un|

et | Imun| ď |un|, les suites réelles panqnPN et pbnqnPN sont bornées.

– On peut appliquer le théorème de Bolzano-Weierstrass à la suite réelle panqnPN, et on obtient qu’il existe une
sous-suite paφpnqq

nPN qui converge.
– La suite pbφpnqq

nPN est bornée comme sous-suite de pbnqnPN, donc on peut en extraire une sous-suite pbφpψpnqqq
nPN

convergente.

On remarque ensuite que la suite paφpψpnqqq
nPN converge comme sous-suite de paφpnqq

nPN. Ainsi, comme pour tout
n P N, on a uφpψpnqq “ aφpψpnqq ` i bφpψpnqq, la suite puφpψpnqqq

nPN est une sous-suite convergente de punqnPN.

VI Suites particulières
1. Suites arithmétiques, géométriques, arithmético-géométriques

On commence par rappeler deux types de suites récurrentes :

– Les suites arithmétiques : punqnPN est arithmétique de raison r si @n P N, un`1 “ un ` r. On peut écrire la
suite de manière explicite : pour tout n P N, un “ u0 ` nr.

– Les suites géométriques : punqnPN est géométrique de raison q si @n P N, un`1 “ qun. On peut écrire la suite
de manière explicite : pour tout n P N, un “ u0q

n.
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Nous allons généraliser ces deux résultats en considérant des suites vérifiant une relation de récurrence du type
un`1 “ aun ` b.

On dit qu’une suite punqnPN est arithmético-géométrique s’il existe a, b P R tels que

@n P N, un`1 “ aun ` b. (AG)

Expression explicite. Si a ­“ 1, on note ℓ l’unique solution de l’équation ax ` b “ x. Alors la suite pun ´ ℓqnPN
est géométrique de raison a, et il existe λ P R tel que

@n P N, un “ λan ` ℓ.

Théorème et définition - Suite arithmético-géométrique

Remarques.

– Le cas a “ 1 dans le théorème ci-dessus correspond au cas d’une suite arithmétique, déjà traité ci-dessus. Le cas
b “ 0 correspond au cas d’une suite géométrique.

– Rechercher un réel ℓ tel que ℓ “ aℓ ` b revient à rechercher une suite punqnPN constante égale à ℓ solution de
(AG).

Démonstration. On considère une suite punqnPN vérifiant la relation de récurrence ci-dessus. Si a ­“ 1, l’équation
ax ` b “ x admet ℓ “ b

1´a pour unique solution. On a par ailleurs pour tout n P N,

un`1 ´ ℓ “ aun ` b ´ paℓ ` bq “ apun ´ ℓq.

Ainsi, la suite pun ´ ℓqnPN est géométrique de raison a, ce qui entraîne que pour tout n P N, un ´ ℓ “ pu0 ´ ℓqan. En
posant λ “ u0 ´ ℓ, on a donc bien : @n P N, un “ λan ` ℓ. Réciproquement, cette suite vérifie bien la relation de
récurrence.

Exemple. Déterminons l’expression explicite de la suite punqnPN définie par : u0 “ 1 et @n P N, un`1 “ 1
2un ´ 1.

L’unique solution de l’équation x “ x
2

´1 est ℓ “ ´2. Par conséquent, il existe λ P R tel que @n P N, un “ λ
`

1
2

˘n
´2.

Comme u0 “ 1, on a λ ´ 2 “ 1, donc λ “ 3. Finalement, @n P N, un “ 3
2n

´ 2.

2. Suites récurrentes linéaires d’ordre 2

Dans cette partie, K désigne R ou C.

On dit qu’une suite numérique punqnPN est récurrente linéaire d’ordre 2 s’il existe a, b P K avec b ­“ 0 tels que

@n P N, un`2 ` aun`1 ` bun “ 0. (R2)

On appelle polynôme caractéristique associé à la relation de récurrence ci-dessus le polynôme P “ X2 `aX ` b.

Définition - Suites récurrentes linéaires d’ordre 2

Remarques.

– Si une suite u vérifie la récurrence (R2), on sait que la connaissance des deux premiers termes de la suite permet
de déterminer la suite entière.

– Les suites géométriques, c’est-à-dire de la forme prnqnPN qui vérifient la récurrence (R2) sont exactement les
suites de la forme prnqnPN avec P prq “ 0. En effet, on a :

p@n P N, rn`2 ` arn`1 ` brn “ 0q ô p@n P N, rn pr2 ` ar ` bq “ 0q.

– Dans le cas où P a une unique racine r, la suite pnrnqnPN est vérifie aussi la récurrence (R2). En effet, on a alors
r “ ´a

2 , donc 2r ` a “ 0, et :

@n P N, pn ` 2qrn`2 ` apn ` 1qrn`1 ` bnrn “ nrn pr2 ` ar ` bq ` rn`1p2r ` aq “ 0.

Comme nous allons le voir, les suites complexes qui vérifient (R2) sont en fait exactement les combinaisons linéaires
de suites comme dans la remarque ci-dessus, selon le discriminant du polynôme caractéristique.
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Plus précisément, les résultats suivants donnent la forme de toutes les suites vérifiant la récurrence (R2) dans le cas
où K “ C et dans le cas où K “ R. Ils seront démontrés ultérieurement.

Si punqnPN est une suite complexe vérifiant la relation de récurrence (R2), de polynôme caractéristique P , alors :

– Si P admet deux racines complexes distinctes r1 et r2, alors il existe λ, µ P C tels que

@n P N, un “ λrn1 ` µrn2 .

– Si P admet une seule racine complexe r0, alors il existe λ, µ P C tels que

@n P N, un “ pλ ` µnq rn0 .

Théorème - Suites récurrentes linéaires d’ordre 2 : cas complexe K “ C

Remarque. Les résultats ci-dessus donnent dans tous les cas la forme du terme général de la suite, il suffit alors de
trouver les nombres λ et µ à partir des termes u0 et u1 en résolvant un système.

Exercice 5. Déterminer l’unique suite complexe punqnPN telle que
"

u0 “ 0, u1 “ 1 ` 4i,
@n P N, un`2 “ p3 ´ 2iqun`1 ´ 5p1 ´ iqun

Solution. Le polynôme caractéristique associé est P “ X2 ´ p3 ´ 2iqX ` 5p1 ´ iq, de discriminant ∆ “ ´15 ` 8i.
Comme 1 ` 4i est racine carrée complexe de ∆, on obtient que les racines de P sont 2 ` i et 1 ´ 3i. On sait alors
qu’il existe λ, µ P C tels que pour tout n P N, un “ λp2 ` iqn ` µp1 ´ 3iqn.
Comme u0 “ λ ` µ et u1 “ λp2 ` iq ` µp1 ´ 3iq, on obtient que λ “ 1 et µ “ ´1. Par conséquent, pour tout n P N,
on a un “ p2 ` iqn ´ p1 ´ 3iqn.

Si punqnPN est une suite réelle vérifiant la relation de récurrence (R2), de polynôme caractéristique P , alors :

– Si P admet deux racines réelles distinctes r1 et r2, alors il existe λ, µ P R tels que

@n P N, un “ λrn1 ` µrn2 .

– Si P admet une seule racine réelle r0, alors il existe λ, µ P R tels que

@n P N, un “ pλ ` µnq rn0 .

– Si P admet deux racines distinctes complexes conjuguées reiθ et re´iθ, alors il existe λ, µ P R tels que

@n P N, un “ rn pλ cospnθq ` µ sinpnθqq.

Théorème - Suites récurrentes linéaires d’ordre 2 : cas réel K “ R

Exemples. 1. Déterminons l’unique suite réelle punqnPN telle que
"

u0 “ 0, u1 “ 1,
@n P N, un`2 “ un`1 ` un.

Le polynôme caractéristique associé à la récurrence ci-dessus est P “ X2 ´X ´ 1, qui a pour racines r1 “ 1`
?
5

2

et r2 “ 1´
?
5

2 . On sait alors qu’il existe λ, µ P R tels que

@n P N, un “ λrn1 ` µrn2 .

Ainsi, u0 “ λ ` µ et u1 “ λ
r 1

` µr2, ce qui donne
"

λ ` µ “ 0
λr1 ` µr2 “ 1

. On en déduit que λ “ 1?
5

et µ “ ´ 1?
5
.

Finalement,
@n P N, un “

1
?
5

˜

ˆ

1 `
?
5

2

˙n

´

ˆ

1 ´
?
5

2

˙n
¸

.

2. Déterminons l’unique suite réelle punqnPN telle que
"

u0 “ 1, u1 “ 2,
@n P N, un`2 “ un`1 ´ un.

Le polynôme caractéristique associé à la récurrence ci-dessus est P “ X2 ´X `1, qui a pour racines 1`i
?
3

2 “ ei
π
3
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et 1´i
?
3

2 “ e´iπ3 . On sait alors qu’il existe λ, µ P R tels que

@n P N, un “ λ cos
nπ

3
` µ sin

nπ

3
.

Ainsi, u0 “ λ et u1 “ λ
2 ` µ

?
3
2 , ce qui donne

"

λ “ 1
λ
2 ` µ

?
3
2 “ 2

. On en déduit que λ “ 1 et µ “
?
3. Finalement,

@n P N, un “ cos
nπ

3
`

?
3 sin

nπ

3
“ 2

ˆ

1

2
cos

nπ

3
`

?
3

2
sin

nπ

3

˙

“ 2 cos
pn ´ 1qπ

3
.

Exercice 6. Déterminer l’unique suite réelle punqnPN telle que
"

u0 “ 2, u1 “ 9,
@n P N, un`2 “ 6un`1 ´ 9un.

Le polynôme caractéristique associé à la récurrence ci-dessus est P “ X2 ´ 6X ` 9 “ pX ´ 3q2, qui a pour unique
racine 3. Ainsi, il existe λ, µ P R tels que @n P N, un “ pλ ` µnq 3n. Comme alors u0 “ λ et u1 “ 3pλ ` µq, on a

"

λ “ 2
3pλ ` µq “ 9

, donc
"

λ “ 2
µ “ 1

et @n P N, un “ p2 ` nq 3n.
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