MPSI — Mathématiques 2025-26

Chapitre 9

Suites réelles

| Généralités

1. Définition d’une suite réelle

Définition - Suite réelle
Une suite réelle est une application u : N — R.

Pour n € N, le réel u(n) est plutét noté w,. On dit que u est de terme général u,. La suite u est aussi notée
(un)neN ou (un)n20~

Remarques.

— Comme ensemble d’applications, ’ensemble des suites réelles est noté RN,
— Il arrive qu’un suite u ne soit pas définie sur N tout entier, mais sur [ng, +o0[ avec ng € N. Dans ce cas, on note
la suite (u),,>,,, et on dit que u,, est le terme initial de la suite.

Nous allons voir qu’on peut introduire une suite de plusieurs manieres distinctes, qu’il conviendra de bien différencier.

Suites définies explicitement

Définition explicite. La suite (uy,), .y est définie explicitement si son terme général est donné explicitement
en fonction de n. En d’autres termes, u,, = f(n), pour une fonction f explicite.

Lorsqu’une suite est définie de maniere explicite, on a souvent directement acces & certaines de ses propriétés
grace aux propriétés de la fonction f.

Exemple. Les suites (/1) N ((—1)”)neN sont définies explicitement.

Suites définies par récurrence

Définition par récurrence. La suite (uy,), .y est définie par :

— ses p premiers termes,

— une relation de récurrence qui exprime le terme u,4, en fonction des p termes précédents.

Lorsqu’une suite est définie par récurrence, on ne peut calculer son terme de rang n qu’apres avoir calculé tous
les termes précédents. On essaie alors des que possible de trouver I'expression explicite de la suite.
Ug = 07 Uy = 1

Exemple. La suite de Fibonacci :
VneN, upro = Upt1 + Uy

Suites définies de maniére implicite

Définition implicite. Le terme général u,, de la suite est défini comme 1'unique solution d’une équation
dépendant de n.

Dans ce cas, on ne connait pas explicitement la valeur de u,,, mais seulement une propriété qui caractérise u.,.
Exemple. Pour tout n € N, I'équation 2™ + 2 — 1 = 0 admet une unique solution dans [0, 1], qu’on note u,.

Démonstration. Soit n € N. La fonction f, : x — x™ + x — 1 est continue, strictement croissante sur [0, 1], et
on a fn(0) = —1 et fn(1) = 1. Le théoréme de la bijection assure alors que f, définit une bijection de [0, 1]
sur [—1,1]. Par conséquent, il existe un unique réel dans [0, 1], qu’on note u,, tel que fy(u,) = 0.
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2. Suites majorées, minorées, bornées

Définition - Suite majorée, minorée, bornée
Une suite réelle (u,,)nen est majorée (resp. minorée, resp. bornée), si 'ensemble {u,, n € N} de ses valeurs est
majoré (resp. minoré, resp. borné). En d’autres termes,
o (Un)nen est majorée si: IM e R, VneN, u, < M,
o (Un)nen est minorée si: Im e R, Vne N, u, > m,
<

o (Un)nen est bornée si: IK =0, VneN, |u,| < K.

Exemples. La suite (sin(n est bornée. La suite ((—1)"n n’est ni majorée, ni minorée.
€ neN

neN

Propriété vraie a partir d’un certain rang. On dit qu’une suite (uy), oy vérifie une propriété & a partir d’un
certain rang s'il existe N € N tel que (uy,), - vérifie la propriété 2.

Exemple. Dire que la suite (uy,), .y est majorée par 1 & partir d’un certain rang signifie : IN e N, Vn > N, u,, < 1.

Remarque.  Une suite (uy),, oy est majorée si et seulement si elle est majorée a partir d’un certain rang. De méme
pour les cas (uy),,cy minorée, ou (uy), .y bornée.

Démonstration. il suffit de montrer que si (un),oy st majorée & partir d’un certain rang, alors elle est majorée.
On suppose que (un),- y est majorée par M. On note ensuite M’ = max{u,, 0 < n < N}. La suite (un),y est
alors majorée par max(M, M'), ce qui conclut.

3. Variations

Définition - Sens de variation

Soit (un)nen une suite réelle. On dit que (uy,)pen est :

— croissante (resp. strictement croissante) si: Yn € N, up i1 = uy (1€SP. Unp1 > Up),

) >
— croissante (resp. strictement croissante) si: Yn € N, up i1 < uy (1€Sp. Unp1 < Up),

— monotone (resp. strictement monotone) si elle est croissante ou décroissante (resp. strictement croissante
ou strictement décroissante),

— stationnaire si elle est constante & partir d’'un certain rang : AN € N, Vn = N, upy1 = Up.

Exemples. La suite ((—3)")nen n’est pas monotone. La suite (| 2]) . est stationnaire.

% Etude de la monotonie d’une suite

Pour déterminer la monotonie d’une suite (u, )nen, On peut :

— montrer que u,+1 — U, est de signe constant,
— si (un)nen est une suite & termes strictement positifs, comparer le quotient “2*L A 1,

Un

— étudier la fonction f si pour tout n € N, w,, est donné par u,, = f(n).

/\  Cas d’une suite récurrente : Vn € N, up+1 = f(uy), f croissante = (u,)nen croissante !
f décroissante = (uy,)nen décroissante !

Il Limite d'une suite

Dans toute la suite, (uy,)nen désigne une suite réelle.

1. Définitions et premieres propriétés

On dit qu’une suite réelle converge vers £ si tout voisinage de ¢ contient tous les réels u,, a partir d’un certain rang.
Ceci se récrit de la maniere suivante.
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Définition - Suite convergente .
On dit que (up)nen converge vers un réel £, ou a pour limite : .
Z,Si g L, _____
Ve>0,INeN, V¥n> N, |u, —£| <e. +<2 o . 5
Dans ce cas, on note v, —> £. L—g frmmmmmmm s
n——+0o0
Si (4n, )nen ne converge pas vers une limite finie, on dit qu’elle
diverge. "
N
Remarque. Onaw, — ¢ < u,—{¢ — 0 < |u,—¥¢ — 0.
n—+ao0 n——+00 n—-+ao0
Exemple. La suite () _, tend vers 0. .
Soit € > 0. On a }%} <e & n> % € ”*”””"”"T’;”;’;”;
Ainsi, si N = |1] +1, alors Vn > N, || <e. e L ,,,,,,,,,,,, N_

Exercice 1. Montrer que si g €] — 1, 1[, alors ¢" - 0.
n—+0o0

' Théoréme

SileRet (v,),y est une suite telle que vy, - 0 et |up —£] < v, & partir d’un certain rang, alors u, - ‘.
n—+00 n—+0o0

Démonstration. Soient ¢ > 0 et N € N tel que Vn = N, |v,| <e. Si N’ € N est tel que Vn = N, |u, — £| < vy, alors

en notant N” = max(N,N’),ona: Yn= N’ |u,—{| <e, dotu, — /L. O
n—-+ao

Définition - Limite infinie

On dit que (up)nen a pour limite +00, et on note u, — +00, si

n—+00
VA>0, INeN, Vn = N, u, > A. . S
A T~~~ ° o ; 7777777 e
On dit que (up)nen & pour limite —oo, et on note uy, —+> —o0, si .
n——+0o0

VA<0, INeN, ¥Yn = N, u, < A.

Exercice 2. Montrer que si g €]1, +oo[, alors ¢ 7, T
n——+0o0
" Théoréme - Unicité de la limite
Si (un),,cy admet une limite £ € R, alors cette limite est unique, et on note n1—i>Too Uy = 1.
Démonstration. On traite le cas ot £ € R : si la suite converge aussi vers £/ € R avec £/ = £, on choisit ¢ = \2—25 L.
Soient N, N’ € N tels que Vn = N, |u,—¢| <cetVn = N, |u,—l'| <e. .
Si on note N” = max(N, N'), alors pour tout n > N”, on a |u, —¥'| < ¢, S .
donc , , , VA o
|up — L] = |up =L+ U =0) = [U=C|—|u, =¥ - ———
! ° ° °
> 2e—e=¢, L. Snnns
ce qui est une contradiction. Ainsi, £ = £'.

Si maintenant ¢/ = 400, on considére N1, N7 € N tels que Vn = Ny, |u, — ¢ <1 et Vn = Ny, u, > £+ 1. On pose
N = max(Ny, N3). On a alors pour tout n > N, u, <1+ ¢ et u, > €+ 1, il y a contradiction. Les autres cas sont de
simples adaptations, et sont laissées en exercice. O
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Théoréme - Suite convergente, suite bornée

Toute suite convergente est bornée.

Démonstration. Supposons que (uy), converge vers £ € R. Soit alors N € N tel que VYn > N, |u,, — ¢| < 1. Pour tout
entier n > N, on a alors |u,| = |uy, — €+ €] < |u, — €]+ (] <1+ 4.

Ainsi, la suite (u,),, est bornée a partir du rang NNV, donc bornée. O

A La réciproque est fausse. Par exemple, si u,, = (—1)" pour tout n € N, alors la suite (un) ey €st bornée, mais ne
converge pas.

2. Limites et opérations

Théoréme - Limites et somme, produit
Si les suites (un),,cy €t (Vn), oy admettent pour limites respectives £, ¢’ € R, alors

. Uy +v, — L+,

n—+ao
7. u,v, — L0, eten particulier,si Ae R, Au, — M.
n—-+0oo n—+00

Ces résultats s’étendent au cas ou £, ¢ avec les opérations dans R, & l'exception des formes indéterminées
(+0) + (—o0) et 0 x +oo.

Démonstration. On se contente de montrer le résultat lorsque £, ¢’ € R, les adaptations aux autres cas sont laissées
en exercice.

i. Soit € > 0. On considere des entiers N, N’ tels que Yn > N, |u, — | < 5 et Yn > N’, |v, — £| < §. Pour tout

n = max(N, N'), on a alors
|(Un +vn) = (E+L)] = |up —L4v, =] < |ug =L+ v, =¥ < 5+5 = e
Ceci montre que u,, + v, —> £+ /.

n—-+0o0

ii. Soit € > 0. La suite (uy),, étant bornée, on peut en considérer une borne K. On considére ensuite des entiers N, N

tels que Vn = N, |u, — ] < W et Y¥n > N, |v, —'| < 5%. On remarque ensuite que si n > max(N, N’),
alors
|un'Un - €€/| = |Un(vn - gl) + K/(un - Z)| < |un| |Un - Ell + |€l| |un - €|
< Koz + W5 < &
Ceci montre que u,v,, —> . O
n—+00

Remarque. Les cas dits indéterminés traduisent des situations ou différents cas de figure peuvent se produire, on ne
peut donc pas statuer en général.

— Cas (+0) + (—0) : par exemple, n —Ilnn —> +o00, n—n? — —o0, n—(n+1) — 1.
n—+0o0 n—+0w n—+a0
Len — 4o, lnn — 0.

— Cas 0 x (+0) : 1
as (+00) : par exemple, R S

Le résultat qui suit fait appel a la notion de limite de fonction, que nous définirons prochainement dans le chapitre
LIMITES ET CONTINUITE, il sera démontré & cette occasion.

" Théoréme - Composition de limite

Soient f : R — R une fonction et £,a € R. Si (uy, )nen o, mona:
n——+00

si ;1_{% f(z) =¢, alors nl—l}foo (un) = £.

En particulier, si f est continue en ¢, alors f(uy,) - f o).
n—+00
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On en déduit le résultat suivant.

" Théoréme - Limites et inverse
Si (un),,ey @ pour limite £ € R et u, = 0 & partir d’un certain rang :

Cp 1 1
- sil=0,alors =~ — 3,

n n—-+00
— siu, — O0etu, >0 a partir d'un certain rang, alors -~ — +o0,
n—+00 Un p—4o00
~ siu, — O0etu, <0 a partir d'un certain rang, alors - — —o0.
n——+0o0 Un pn—4o00

Remarques.
— On note parfois u,, — £+ (resp. u, — £7) lorsque u, — 0 et u, > £ (resp. u, < £) & partir d’un certain rang.

On peut alors écrire dans le contexte ci-dessus : si u, — 0%, alors - — +o0.
n—+0 Un n—+o0

— Si ¢ =0 et u, n’est pas de signe constant a partir d’'un certain rang, la suite (ui) N n’a pas de limite.
n ne

% Gestion de certaines formes indéterminées
Voici trois cas ou il est aisé de lever une indétermination dans un calcul de limite.

— Utilisation des croissances comparées. Si «, 3,7 € R%, on a

1 a B yn
Wr® o hm 20 m =0

n—-+ow e n—+ow nl

lim
n——+ao0 nﬁ

Les deux premiers résultats proviennent des résultats de croissances comparées vues dans le chapitre RAP-
PELS ET COMPLEMENTS SUR LES FONCTIONS REELLES, le dernier sera montré plus loin dans ce chapitre.

On peut donc directement conclure lorsqu’on est confronté & 1’'une des formes indéterminées ci-dessus.

— Utilisation de la quantité conjuguée. Pour calculer la limite indéterminée d’une suite de la forme
(un —vp),, ot (un),, et (vy,), sont des suites strictement positives, on peut écrire :

(Up, — Op) (Un, + V) u2 — 2
Uy — Uy = = .
Uy + Up Up, + Up

Si la limite lim u2 — v2 n’est pas indéterminée, on peut parfois conclure.

Exemple. Siu, =n (/\ /1+ % — 1) pour tout n € N*, alors on a

(Vi+i-1) (yi+i+1) 1411 !
= z = donc u,, —

1
Uy = N =n = , 5
A1+ 141 ViI+i+1 g 1+d 41 note

— Utilisation du nombre dérivé. Si une fonction réelle f est dérivable en un point a et (hy), est une suite
qui converge vers 0, alors
fla+h) - f(a) fla+hn) — f(a)

/ !
comme  ——————— nj@f (a), ona I, o f'(a).

Exemple. On retrouve la limite de ’exemple précédent : si f : x € Ry +— 4/, alors

f(1+ %) _f(l), dleriE Uy, n:w f/(l) _ %

Up =

1
n

Un principe pour la gestion de formes indéterminées qu’on ne sait pas gérer est de factoriser les sommes de termes
par leur terme dominant, de maniére a faire apparaitre des termes ayant une limite nulle.
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3. Limites et inégalités

Comme nous allons le voir, le résultat suivant est une conséquence directe de la définition de la notion de limite.

" Théoréme - Limites et inégalités strictes

Siu, — feRetm,MeR,alors :

n— -+
— si m < £, alors u, > m a partir d’'un certain rang,
—sif < M, alors u,, < M a partir d’un certain rang.

Démonstration. Montrons le premier point, le second étant analogue.

- Cas u, — £>m. Soit € = £ —m. On considére N € N tel que Vn > N, |u, — £| < e. Ainsi, sin > N,
noe onau, —¥{>—=m—/¥, donc u, >m.

- Cas u, — +o0. par définition, il existe NV tel que Vn > N, u, > m. O
n—0o0

Remarque. En particulier, si w, — £ >0, la suite (u,),y est strictement positive a partir d'un certain rang.
n—+o0

A Le résultat devient faux si I'inégalité est large. Par exemple : si u,, = —% pour tout n € N*, alors u,, — £ avec

n—o0

£=0.0na{ >0, mais on n’a pas u, = 0 a partir d’'un certain rang.

- Théoréme - Passage a la limite dans les inégalités larges

Si (tn) ey €t (Un),en SOnt deux suites admettant une limite et u, < v, & partir d’un certain rang, alors

lim u, < lim v,.
n—+00 n—+00

Démonstration. On note ¢ et ¢’ les limites respectives des suites (uy), et (vp),. On raisonne par l'absurde et on
suppose que £ > {’. On en déduit alors que la suite (u,, — vy,),, a pour limite £ — ¢’ > 0. Le théoreme précédent assure
alors qu’a partir d’un certain rang, on a u,, — v, > 0, ce qui est une contradiction. O

/\ Le résultat devient faux pour les inégalités strictes.

Par exemple, si u,, = 0 et v,, = %, on a u, < v, pour tout n € N*, mais lim wu, = lim v, =0.
n——+00 n——+00

Si u, < v, & partir d’un certain rang, on peut bien siir dire que £ < ', mais pas £ < £’. On retiendra que

les inégalités strictes deviennent larges a la limite

4. Théorémes d’existence de limite

Les théorémes suivants permettent de démontrer I’existence d’une limite d’une suite réelle dans des cas particuliers.

a. Encadrement, minoration, majoration

" Théoréeme - Encadrement, comparaison

Si (un),ens (Vn) pens (Wn) ey SONE trois suites réelles et £ € R, alors on a les propriétés suivantes.

— Encadrement : si v, < u, < w, a partir d’'un certain rang et v, — ¢, w, — /{, alorsu, — /.
n—+00 n—+0o0 n—+00

— Minoration : si v, < u, a partir d'un certain rang et v,, — 400, alors u,, —> -+00.
n—+0o0 n—+00

— Magjoration : si u, < v, a partir d’'un certain rang et v,, — —o0, alors v, — —o0.
n— 400 n— 400
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Démonstration.
— On suppose qu’a partir du rang Ny, on a v, < U, < Wy,. o Up oy e Wy

Si on fixe € > 0, on sait qu’a partir d’'un certain rang N7, . .
on a v, > ¥ — ¢, et a partir d’'un certain rang No, ona £f+e {--¢------- - ey B
wn<£+5. /R S pp—— 6,,é,,;,,0,,0,,27707737,',,
On pose N = max(Ny, N1, Na). Ainsi, pour tout n = N, (e b o , TGy
onal—e<v, <u, <w, <l+e¢, donc |u, — ¥ <e. o °
Ainsi, on a donc bien u, —> /. ’

n— -+ N

— On se contente de montrer le résultat de minoration : soit A > 0. On sait qu’a partir d’un certain rang Ny on a
Up < Uy, et & partir d’un certain rang Ny, on a v, > A. Ainsi, pour tout n = max(Ny, N1), on a u, = v, > A,

donc u,, —> oo. O
n—-+o

Remarque. Une conséquence souvent utile est que si u,, —> 0 et (v, )nen est bornée, alors unv, — 0.
n—+00 n—+400

Démonstration. En effet, soit M tel que pour tout n € N, |v,| < M, on a alors pour tout n € N,

|unvn| < Mlu,| — 0.
n——+00

Ainsi, u,v, —> O. O
n—-+ao0

Exercice 3. Déterminer la limite de la suite (u,) dans chacun des cas suivants.

sinn o (=1)"/n

1.VvneN, u, = , 2.YneN, u, = —, 3.VneN, u, =2+
"o+l " Z k2 " n+1
k=n+1
Exemple. Régle de d’Alembert pour les suites. Soit (un)nen strictement positive telle que % 7 £. Alors
n n—+400
- sif <1, alors u, — 0,
n— -+
— si ¢ >1, alors u,, —> +o00.
n—+0o0

Démonstration. Si ¢ < 1, on considere g tel que ¢ < ¢ < 1. On sait qu’il existe un rang N a partir duquel

Up 41 . . ,
e <q Ainsi, si n = N, alors par télescopage,

u n—1 u n—1 u

k+1 - N

—n:H <nq:q” N donc 0<wu, < —q"

UN- N Uk k=N q
Comme ¢ — 0, on a par encadrement u,, —> 0. Le cas £ > 1 est analogue. O

n— -+ n—-+0w

Plus généralement, si (un)nen €t (vp)nen sont deux suites strictement positives, telles que “2=+ < 2 & partir d’un

n n
certain rang N, le méme télescopage donne : u,, < ’;—ﬁ v, pour tout n = N, ce qui permet d’utiliser directement les
théorémes de minoration ou majoration.

Théoréme - Croissance comparée de I’exponentielle et la factorielle

.,ETL
Pour tout ze R,ona — — 0.

n! n—+ow
2 . 4, 4, , yn
Remarque. On retrouve donc le résultat de croissance comparée énoncé plus haut : pour tout ye R, < — 0.
P on—>+00
Démonstration. Si x = 0, le résultat est clair. Sinon, en notant u, = % pour tout n € N, on a % = n‘ill, ce qui
. n
entraine que =¥ — 0, donc u, — 0 par la régle de d’Alembert. O
Un  n—400 n—+0
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b. Théoréme de la limite monotone

Théoreme - Théoréme de la limite monotone
Soit (uy,),, une suite réelle.

o Si (up),, est croissante, alors : — si (uy),, est majorée, alors elle converge vers sup {u,, n € N},
—si (un),, n’est pas majorée, alors elle diverge vers +o0.

Dans le cas ou u,, 7 e R, on a ¢ = sup {u,, n €N}, et donc u, < ¢ pour tout n € N.
n—+0o0

o Si (up),, est décroissante, alors :  — si (u,),, est minorée, alors elle converge vers inf {u,, n € N},
—si (un),, nest pas minorée, alors elle diverge vers —oo.

Dans le cas ou u, e e R, on a ¢ = inf {u,, n e N}, et donc u,, > ¢ pour tout n € N.
n—+0o0

Démonstration. On se contente de montrer le premier point, le second étant similaire.

— Supposons que (uy),,cy est majorée. Notons £ = sup {u,, n € N} et fixons € > 0. On sait qu'il existe N € N tel
que uy > ¢ —e. Ainsi, pour tout n > N, ona { —¢ < uy < u, < £ par croissance de la suite (uy),,. Ceci entraine

que |u, — ¢| <e. On a donc montré que u, — £.
n—-+ao

— Supposons que (uy,), .y D'est pas majorée et fixons A > 0. Comme A n’est pas un majorant de {u,, n € N}, il

existe N € N tel que uy > A. Par croissance, on a alors u,, > A pour tout n > N, donc u,, —> +o0. O
n—-+0oo0

Remarques.
— Une suite monotone admet donc toujours une limite dans R.
— Si une suite est monotone & partir d’un certain rang, le résultat du théoréeme est toujours valable.

— Si (un),cy €st une suite positive et

n
Sn =D uk
k=0

pour tout n € N, alors la suite (5,,),,cy est croissante, donc converge si elle est majorée, et diverge vers +co sinon.

c. Théoréeme des suites adjacentes

Définition - Suites adjacentes
On dit que deux suites (un)nen €t (Vn)nen sont adjacentes si :
* les suites (U )nen et (U )nen sont monotones, de monotonies opposées,
* lim v, —u, =0.

n—+00

Le théoréme suivant, qui est une conséquence du théoréme de la limite monotone, assure que deux suites adjacentes
sont toutous convergentes, de méme limite, et fournit un encadrement souvent tres utile.

Théoréme - Théoréme des suites adjacentes
Si (tn) ey €t (Un),en sont deux suites adjacentes, alors :

i. les suites (up)n et (v,), convergent vers une méme limite ¢ finie,

ii. si (up)n est croissante et (v, ), décroissante, alors u, < ¢ < v, pour tout n € N.

Démonstration. On suppose que (uy,), est croissante et (v, ), décroissante. On remarque que pour tout n € N, on a
Un41l — Unt1 < Up — Uy, donc la suite (v, —uy),, oy est décroissante et converge vers 0, donc elle est positive. On a
donc bien u,, < v, pour tout n € N. Ainsi,

— pour tout n € N, u,, < v, < vy par décroissance de (vy),,, donc la suite (u,), est croissante et majorée par vy,
elle converge alors vers un réel noté £ par le théoréme de la limite monotone,

— pour tout n € N, v, > u, > ug, donc la suite (v,),, est décroissante et minorée, elle converge alors vers un réel
noté £'.
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Par conséquent, la suite (v, — uy,),, converge vers £’ —¢. D’apres la définition des suites adjacentes, on a alors ¢’ —¢ = 0,
soit £ = ¢'. Finalement, on a bien montré que les deux suites convergent vers la méme limite £.
La croissance de (uy),, et la décroissance de (v,),, entrainent donc bien que pour tout n € N, ona u, <letwv, > (. O

n

1 1
Exemple. Si pour tout n e N*, u, = kgo o et vy = Uy + el les suites (un),cne €t (Vn) e+ SONt adjacentes.

— PourneN,ona:

1 1 1 nn+1)+n—(n+1)?> -1

n+ 1)! * (n+1)(n+1)! nn! nn+1)(n+ 1)! T+ 1)(n+1)

Un-%—lfvn:( '<07

et Unt1 — un = 5 >0, donc (un),, oy« est croissante, et (vn), oy« est décroissante.

1

ol donc lim v, —u, = 0.

— Pour tout n € N*, on a v, — u, =
n—+0o0

Les suites (un),, et (vn),, sont donc adjacentes, et le théoréme des suites adjacentes affirme qu’elles convergent donc
toutes deux vers la méme limite.

5. Caractérisations séquentielles

Théoreme - Caractérisation séquentielle des bornes supérieure et inférieure
Soit A une partie non vide de R.

— Si A est majorée, alors

M est un majorant de A,

M = A a0 . oy q
Sup = { il existe une suite d’éléments de A qui converge vers M.

— A n’est pas majorée si et seulement s’il existe une suite d’éléments de A qui diverge vers +o0.

Le cas de la borne inférieure est analogue.

Remarque. Ona: ¢ M est un majorant de A < supA <M
¢ il existe une suite d’éléments de A qui converge vers M < sup A > M.

Démonstration.

— Supposons que M = sup A. On sait alors que M est un majorant de A. Par ailleurs, pour tout n € N*, il existe

Ty, € A tel que x, > M — %, donc M — % < xp < M. On déduit par encadrement que z,, — M.
n——+0o0

Réciproquement, si (), est une suite de A qui converge vers un majorant M de A. On considéere un autre
majorant de A, noté M’'. Comme pour tout n, x, < M’, on déduit par passage & la limite que M < M’.
Finalement, M est le plus petit majorant de A, donc M = sup A.

— 11 est clair que s’il existe une suite d’éléments de A qui diverge vers +00, alors A n’est pas majoré. Supposons
maintenant que A n’est pas majoré. Par conséquent, pour tout n € N, n n’est pas un majorant de A, donc il

existe x, € A tel que x,, > n. Par minoration, on déduit alors que x,, — +00. O
n——+o

Exercice 4. Soient A, B des parties non vides et majorées de R. Montrer que I’ensemble A+ B = {x+y, v € A, y € B}
admet une borne supérieure, et sup(A + B) = sup A + sup B.

Théoréme - Caractérisation séquentielle de la densité

Une partie A de R est dense dans R si et seulement si tout élément de R est limite d’une suite d’éléments de A.

Rappel. D’aprés la caractérisation de la densité vue au chapitre COMPLEMENTS SUR LES NOMBRES REELS, A est
dense dans R si et seulement si Vz € R, Ve >0, Ja€ A, |z —a| <e.

Démonstration.

— Si A est dense dans R et z € R, on sait que pour tout n € N*| il existe z,, € A tel que |z, —z| < % Ceci entraine

que r, —— X.
n—+00

— Supposons que pour tout z € R, il existe une suite de A qui converge vers x. Fixons z € R et € > 0. Si (2y,),,cy
est une suite de A qui converge vers z, il existe N € N tel que |z — x| < e. Ceci conclut car xy € A. O

Lycée Montesquieu 9



MPSI — Mathématiques 2025-26

Remarque. La densité de Q dans R entraine donc que pour tout réel z, il existe une suite (gy,) de rationnels telle

que g, — X.
n—-+0o0

neN

Définition - Point adhérent a une partie, adhérence

Soit A une partie de R. On dit que = € R est un point adhérent & A §’il existe une suite (2, )neny de A qui converge
vers .

On appelle adhérence de A I'ensemble des points adhérents a A.

Remarques.

~ On note souvent A Padhérence de A (attention de ne pas confondre avec le complémentaire). On a bien sfir
Ac A
— On remarque que “A est dense dans R” se récrit alors simplement : A = R.

Il Suites extraites

Définition - Extractrice, suite extraite, valeur d’adhérence

Si ¢ : N — N est strictement croissante, on dit que ¢ est une extractrice, et que la suite (uw(n))neN est une suite

extraite, ou sous-suite de (Un)neN'

Si (un),ey @ Une sous-suite qui converge vers un réel £, on dit que £ est une valeur d’adhérence de la suite (uy),,cy-

Remarques.

— La suite extraite (U‘P("))ne n’est autre que application v o ¢ : N — R.

N
— Par stricte croissance de ¢, on a ¢(n) = n pour tout n € N.
Exemples.

— La suite (sin(n?)),en est une suite extraite de (sinn),ey, d’extractrice ¢ : n +— n2.

— Siu, = (—1)" pour tout n € N, la suite (uy,), .y admet 1 et —1 pour valeurs d’adhérence : ce sont les limites
respectives des sous-suites (Uan ), ey €t (U2n+1),en-

' Théoréme

Si (un),cy admet £ € R pour limite, alors toutes ses suites extraites admettent la méme limite.

Démonstration. On écrit la preuve pour £ € R, on adapte aisément aux autres cas. On considére une sous-suite
(u@(n))neN de (un),,cy- Soit € > 0, on sait qu’il existe N € N tel que Yn > N, |u,, — | < €. Ainsi, pour tout n > N, on
a@(n)=n= N, donc on a aussi [uy(,) — £ <&, Aol Uy T L. O
Remarque. En particulier, si (un,), oy admet une sous-suite qui n’a pas de limite, ou deux sous-suites ayant des limites
distinctes, alors la suite (u,), .y n'a pas de limite.

Exemple. Siu, = (—1)" pour tout n € N, alors us, - 1 et ugpi1 - —1, donc ((—1)"),,cy 1'a pas de limite.
n—+0o0 n——+0o0

Théoreme

Si les suites extraites (u2y,),,cy €t (U2n+1),,cy @dmettent la méme limite £ € R, alors u, - /.
n——+0o0

Démonstration. On traite le cas £ € R. Soit € > 0. On considére des entiers N1, No tels que Vk = Ny, |ugp — €] < € et
Vk = Na, |uaks1 — £ <e. On pose N = max(2N7,2N3) et on fixe n > N.

— Si n est pair, alors on peut écrire n = 2k ol k est un entier tel que k = Ny, d’ou |u, — €| = |ugr, — ¢| < e.
— Sin est impair, alors on peut écrire n = 2k + 1 ou k est un entier tel que k = No, d’ol |u, — €| = |ugg+1 — ] < e.

Ainsi, on a montré ¥n = N, |u, — ¢| < &, ce qui conclut. O
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Remarque. De méme, si les suites (usn),cny (Usn+1)pen €6 (Usn+2),ey Ont la méme limite £ € R, alors uy, e L.

Le résultat suivant d’avere pratique pour caractériser le caractére non majoré ou le fait qu’une suite ne diverge par
vers +00 en terme de sous-suite.

" Théoréme
(7) La suite (up),oy €st non majorée si et seulement si elle possede une sous-suite qui tend vers +oo.
(7) La suite (uy), oy ne tend pas vers +o0 si et seulement si elle possede une sous-suite bornée.

Démonstration.

(i) Supposons que (uy,),,y €st non majorée, c’est-a-dire VM € R, 3k € N, uy > M, et construisons par récurrence

une extractrice ¢ telle que wug(y) - +00.
n—-+0o0

o On sait qu'il existe un entier k tel que uy = 0, on pose alors p(0) = 0, de sorte que Ug(0) = 0.
o Soit n € N. On suppose ¢(n) construit tel que ug,(,) = 0. On a l'existence d'un entier k& > ¢(n) tel que
ug = n + 1. En effet, sinon pour tout k > ¢(n), on a ux < n + 1, donc la suite est majorée. On pose alors
@o(n+1) =k, ce qui assure que p(n + 1) > p(n) et uy41) =n + 1.
Comme pour tout n € N, Ugp(n) = N, O & Uy(p) n:»m 400 par majoration.
(7)) Ce point se démontre d’une maniére similaire, et est laissé en exercice. O

Le théoreme suivant est 'un des théorémes principaux que nous verrons cette année. Il permettra en particulier de
montrer que toute fonction continue sur un segmente est bornée et atteint ses bornes.

Théoreme - Théoréeme de Bolzano-Weierstrass

Toute suite réelle bornée a une sous-suite convergente.

Démonstration. Soit (u,,), .y une suite réelle bornée dont considére un minorant a et un majorant b. Nous allons
construire par récurrence des suites (ay,),oy €t (bn),,cy telles que pour tout n € N, b, — a,, < 5 (b — a) et I'ensemble
{keN, a, < ug < by} est infini (en d’autres termes, 'intervalle [a,,,b,] contient une infinité de termes de la suite).

— On pose ag = a et by = b. On a bien by — ap = b — a et comme [ag,by] contient tous les terme de la suite,
lensemble {k € N, ag < uy < bo} est infini.
— Soit n € N. On suppose que les réels a, et b, sont tels que 'ensemble {k € N, a,, < ug < b,} soit infini et
b, —a, = 2%,(() — a). On note ensuite m,, = %.
o Si{keN, a, < up <my} est infini, on pose ap+1 = ay et b1 = my,. Alors {k € N, a1 < up < bt}
est infini, et b1 — any1 = %(bn —ap) = 2%(b —a).
o Sinon, {k € N, m,, < up < b,} est infini, et on pose a,y1 = my, et byy1 = b,. On a alors les mémes
conséquences que ci-dessus.
Par construction, les suites (ay), oy est croissante et (by,), .y est décroissante. Comme de plus b, — a, < 2%(() —a)
pour tout n € N, les deux suites sont adjacentes, et convergent donc vers une méme limite £.

On construit ensuite 'extractrice ¢ par récurrence de la maniere suivante.

o On pose ¢(0) = 0.
© On suppose @(n) créé, et on définit p(n + 1) comme le plus petit entier k > p(n) tel que apt1 < k < bpta-
Comme {k > N, ani1 < up < bpi1} est infini, existence de cet entier est assurée.

Comme pour tout n € N, on a a, < uy(n) < by, on en déduit par comparaison que vy, S L. O

Remarque. On peut reformuler le théoreme de Bolzano-Weierstrass de la maniére suivante : toute suite réelle bornée
admet une valeur d’adhérence.

IV  Suites récurrentes

Nous allons étudier ici les suites qui vérifient une relation de récurrence du type : Yn € N, u,y1 = f(uy), olt f est une
fonction fixée.
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Définition - Ensemble stable par une fonction
Soit f € #(FE,R) on dit qu'une partie A de F est stable par f si Vo € A, f(x) € A. En d’autres termes, f(A) c A.

La preuve du résultat suivant repose directement sur le principe de récurrence.

Définition-théoréme - Suites récurrentes
Soient f : £ — R une fonction réelle, I un intervalle stable par f et a € I. Il existe une unique suite (uy,),, oy telle

que
{ Upg = a,

1 = f(tin) ®)

De plus, pour tout n € N, on a u,, € I.

Remarques.

— Il est crucial que I soit stable par f pour que 'on puisse définir la suite (u,,),,.y comme ci-dessus : il faut pouvoir
assurer que pour chaque n € N, f(u,,) est bien défini.
— Si lintervalle I est minoré et/ou majoré, la stabilité de f fournit directement un minorant et/ou un majorant

de la suite (un),,cn-

- A Dans la relation de récurrence qui définit f, il est crucial que f ne dépende pas de n : la suite définie par

up=0et VneN, upy1 =1+ n“fl n’est pas une suite récurrente.

est bien définie et bornée.

Exemple. La suite définie par up € [0,1] et VR € N, up4q =
n

En effet, soit la fonction f : z +— x—}rl L’ensemble [0, 1] est stable par f, donc la suite est bien définie, et pour tout
neN 0<u, <1.

A\ si [ est monotone sur I'intervalle I, la suite (uy,), .y 0'est pas nécessairement monotone de méme monotonie. Par
exemple, si ug = 1 et Vn € N, 1,1 = 2u,, la suite (Un) ey €St strictement décroissante, mais la fonction 2 +— Ly

2 2
est croissante.

On peut en revanche obtenir la monotonie de la suite définie par ([®) si la fonction z — f(x) — = ne change pas de
signe sur l'intervalle stable I.

Théoreme - Monotonie d’une suite récurrente

Soient f : E — R et I < E un intervalle stable par f. On considére une suite (u,), .y telle que ug € I et
VneN, upt1 = f(un).

— Six— f(x) —x est positive sur I, alors la suite (uy),,cy est croissante.
— Six — f(x) — x est négative sur I, alors la suite (uy,),,y est décroissante.

Démonstration. Traitons le cas ou ¢ : z — f(x) — x est positive sur I, c’est-a-dire que pour tout = € I, f(z) = z.
Pour tout n € N, on a alors u,+1 = f(un) = up, d’ott la croissance de la suite. O

Comme on I’a vu, la monotonie de la fonction f ne donne pas directement la monotonie de la suite récurrente, mais
elle donne une information sur le comportement de la suite.

Théoreme - Monotonie d'une suite récurrente (2)

Soient f : E — R et I < E un intervalle stable par f. On considére une suite (uy,), .y telle que ug € I et
VneN, upi1 = f(ug).

— Si f est croissante sur I, alors la suite (uy,), .y €st monotone.
— Si f est décroissante sur I, alors les suites (ugn)neN et <u2n+1)n€N sont monotones, de monotonies opposées.

Remarque. Dans le premier cas, on peut aisément déterminer la monotonie de (uy,),, . en comparant ug et u;. Dans
le second cas, il suffit de comparer ug et us.
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Démonstration.

— Supposons que u; = up (lautre cas est identique). Montrons par récurrence que pour tout n € N, w11 = .
L’initialisation est déja faite. Fixons n € N et supposons que up41 = t,. On a f(up+1) = f(upn) par croissance
de f, c’est-a-dire u, 12 = u,11, ce qui achéve la récurrence.

— 11 suffit de remarquer que la fonction f o f est croissante, et que la suite (u2,),y est la suite récurrente de
premier terme ug associée a la fonction f o f, donc elle est monotone par le point précédent. Ensuite, pour tout
n €N, ugp i3 — o1 = f(uant2) — f(u2,), done par décroissance de f sur I, ugy, 3 — Uan+1 €t Uspio — Ugy sont
de signes opposés. O

/\ Dans les deux résultats précédents sur la monotonie des suites récurrentes, il est crucial d’étudier la monotonie
de f oude z — f(x) — z sur un intervalle stable par f, sans quoi on ne peut rien déduire sur la suite.

" Théoréme - Limite d’une suite récurrente et point fixe

Soient f : E — R et I < F un intervalle stable par f. On considére une suite (u,), .y telle que ug € I et
VneN, upt1 = f(upn). Siug, - eI et f est continue en ¢, alors £ est un point fixe de f : f(¢) = .
n——+0o0

Démonstration. Comme u,, - fiona: ¢ Uptr = f(up) - f(¢) par continuité de f
n—+0o0 n—+0oo

o Upyr — L.
n—-+00

Ainsi, par unicité de la limite, on a f(¢) = ¢. O
Remarques.

— Si (un),,cy €st une suite récurrente comme ci-dessus telle que f est continue sur I, alors la recherche de ses points

fixes sur I permet de lister toutes les valeurs possibles d’une éventuelle limite de (uy,),,cx-

— Comme on I'a vu, Pétude de la fonction z — f(z) — 2 permet de conclure sur les variations de la suite (uy,)
les zéros de ¢ sur I donnent par ailleurs les points fixes de f, donc les limites éventuelles de la suite.

neN»

Exemple. On considére la suite (uy,), .y définie par :

Ug € [1,4—00[,
VneN, upr1 =1+Inzx

neN

— La suite (uy,),,cy est bien définie : I'intervalle [1, +-00[ est stable par la fonction f : z — 1+Inx, qui est croissante
et vérifie f(1) = 1. On a de plus pour tout n € N, u,, > 1.

— La fonction ¢ : @ — f(z) — x est dérivable sur [1, +00[, et pour tout x €]1,+o0[, on a ¢'(z) = L —1 <0, donc
¢ est strictement décroissante sur [1,+0o0[. Comme ¢(0) = 0, on en déduit que ¢ est négative sur [1, +oo, et
l'unique point fixe de f sur [1, +oo| est 1.

Par conséquent, la suite (), est décroissante et minorée par 1, donc elle converge. Comme 1 est I'unique

point fixe de f sur [1,+oo[, on a v, —> 1.
n— -+

V Extension au cas complexe

On étend I’étude précédente au cas des suites complexes, c’est-a-dire des suites a valeurs dans C. Il s’agit des applica-
tions de N dans C. On note alors CN I’ensemble des suites complexes.

Pour toute suite complexe u, on a les suites réelles :
o Rewu, de terme général (Reu), = Re(uy,), o @ de terme général (), = Uy,
o Jmu, de terme général (Jmu), = Im(uy,) o |u|, de terme général |u|, = |u,|.

Définition - Suite complexe bornée

| On dit qu'une suite complexe (uy,), .y est bornée s’il existe M € R tel que pour tout n e N, |u,| < M.

Théoréme - Suite bornée, partie réelle, partie imaginaire

| Une suite complexe u est bornée si et seulement si les suites réelles Reu et Jmu sont bornées.
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Démonstration.

— Si u est bornée par M, alors pour tout n, |Reu,| < |uy| < M, et |Imu,| < |u,| < M, donc Rewu et Tmu sont
bornées.

— Si Rewu et Jmu sont bornées, respectivement par M et M’, alors |u,|* = (Reu,)? + (Imu,)? < M? + M”? pour
tout n € N, donc |u,| < vVM? + M2, et u est bornée. O

Définition - Suite complexe convergente
On dit que la suite complexe u converge vers L€ Csi Ve >0, INe N, Vn = N, |u, — {| <e.

Si u est une suite complexe, on a toujours le résultat de majoration : s’il existe une suite réelle v telle que

o |up, — €] < v, & partir d’un certain rang

ov, —> 0,
n—+0o0
alors u,, — /.
n—-+0o0

: 7 . in6
Exemple. La suite (uy,),,oy définie par : Vn € N, u,, = — converge vers 0. En effet, on a |u,| =+ — 0.
n— -+

Théoréme - Convergence et partie réelle, partie imaginaire

Soient u une suite complexe et £ € C. On a

Re uy, - Re L,
n—+o0
v P ¢ Jmu, — Jm/.
n—+00
Démonstration. 11 suffit de constater que pour tout n € N, |u, — €2 = |Reu,, — Re l|? + | Imu,, — {|?. O

Remarque. Toutes les propriétés n’utilisant pas d’inégalité dans le cas réel sont encore vraies dans le cadre complexe,
car les démonstrations reposent sur l'utilisation de I'inégalité triangulaire.

En particulier, une suite complexe convergente est bornée, il y a unicité de la limite, et les théorémes sur les opérations
sont encore valables. En revanche, les théoremes d’existence ne sont plus valables.

Nous allons voir par ailleurs que le théoreme de Bolzano-Weierstrass est toujours vrai dans ce cadre.

Théoréme - Théoréeme de Bolzano-Weierstrass, cas complexe

Toute suite complexe bornée a une sous-suite convergente.

Démonstration. Pour tout n € N, on note a, = Reu, et b, = IJmu,. Comme pour tout n € N, on a |Reu,| < |uy|
et |Imuy,| < |u,|, les suites réelles (ay,), .y €t (bn),cy sont bornées.

— On peut appliquer le théoréme de Bolzano-Weierstrass a la suite réelle (ay,) et on obtient qu’il existe une

sous-suite (ay(n)), .y Ui converge.

neN>»

— La suite (by(n)), .y €st bornée comme sous-suite de (by,),,cy, donc on peut en extraire une sous-suite (by(y(n)))
convergente.

neN

. Ainsi, comme pour tout
O

On remarque ensuite que la suite (ay(y(n))), oy CONVerge comme sous-suite de (ay(n)),

n €N, on a Uyy(n)) = Au(pn)) T 1bp(p(n))s 1a suite (uy(pn))),, o €t une sous-suite convergente de (uy,),,cy-

VI Suites particuliéres
1. Suites arithmétiques, géométriques, arithmético-géométriques

On commence par rappeler deux types de suites récurrentes :

— Les suites arithmétiques : (u,)nen est arithmétique de raison r si Vn € N, w,41 = w, + r. On peut écrire la
suite de maniere explicite : pour tout n € N, u,, = ug + nr.

— Les suites géométriques : (uy,)nen est géométrique de raison ¢ si Vn € N, wu, 41 = qu,. On peut écrire la suite
de maniere explicite : pour tout n € N, u,, = ugq™.
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Nous allons généraliser ces deux résultats en considérant des suites vérifiant une relation de récurrence du type
Upi1 = Uy + b.

" Théoreme et définition - Suite arithmético-géométrique
On dit qu’une suite (u,),, oy est arithmético-géométrique s’il existe a,b € R tels que
VneN, u, 1 = au, +b. (AG)

Ezpression explicite. Si a = 1, on note £ 'unique solution de I’équation ax + b = z. Alors la suite (u, — ¢)
est géométrique de raison a, et il existe A € R tel que

neN

VneN, u, = Aa” + /.

Remarques.

— Le cas a = 1 dans le théoréme ci-dessus correspond au cas d’une suite arithmétique, déja traité ci-dessus. Le cas
b = 0 correspond au cas d’une suite géométrique.

— Rechercher un réel £ tel que ¢ = al + b revient & rechercher une suite (uy), .y constante égale a £ solution de

zre)p

Démonstration. On considére une suite (uy), oy vérifiant la relation de récurrence ci-dessus. Si a = 1, I'équation
ar + b=z admet { = % pour unique solution. On a par ailleurs pour tout n € N,

Uns1 — € = aup +b—(al +b) = a(u, — ).

Ainsi, la suite (u, —£), .y est géométrique de raison a, ce qui entraine que pour tout n € N, u, — £ = (ug — £)a™. En

posant A = ug — ¢, on a donc bien : Vn € N, u,, = Aa™ + £. Réciproquement, cette suite vérifie bien la relation de

récurrence. [

Exemple. Déterminons I'expression explicite de la suite (uy,), . définie par : ug =1 et Vne N, u,4q = %un —1.
L’unique solution de ’équation x = 5 —1 est £ = —2. Par conséquent, il existe A € R tel que Vn € N, u, = /\(%)n —2.

Comme up =1, ona A —2 =1, donc A\ = 3. Finalement, Vn e N, u,, = -2

3
on
2. Suites récurrentes linéaires d’ordre 2

Dans cette partie, K désigne R ou C.

Définition - Suites récurrentes linéaires d’ordre 2

On dit qu’une suite numérique (uy,), .y est récurrente linéaire d’ordre 2 s'il existe a,b € K avec b = 0 tels que
VneN, upyo + atpy1 + bu, = 0. (R2)

On appelle polynéme caractéristique associé & la relation de récurrence ci-dessus le polynéme P = X2 +aX +b.

Remarques.

— Si une suite u vérifie la récurrence ([R9), on sait que la connaissance des deux premiers termes de la suite permet
de déterminer la suite entiere.

— Les suites géométriques, c’est-a-dire de la forme (r™),en qui vérifient la récurrence ([Z4) sont exactement les
suites de la forme (r")pen avec P(r) = 0. En effet, on a :

(VneN, ™2 far™ £ 0" = 0) < (WneN, " (% +ar +b) = 0).

— Dans le cas ot P a une unique racine r, la suite (nr™), _ est vérifie aussi la récurrence ([Rd). En effet, on a alors
r=—g,donc 2r +a =0, et :

YneN, (n+2)r""2 +a(n+ )r"t +bnr™ = nr™ (r* + ar +0) +r"H(2r +a) = 0.

Comme nous allons le voir, les suites complexes qui vérifient ([Z3) sont en fait exactement les combinaisons linéaires
de suites comme dans la remarque ci-dessus, selon le discriminant du polynéme caractéristique.
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Plus précisément, les résultats suivants donnent la forme de toutes les suites vérifiant la récurrence ([Xd) dans le cas
ou K = C et dans le cas ou K = R. Ils seront démontrés ultérieurement.

Théoréme - Suites récurrentes linéaires d’ordre 2 : cas complexe K = C
Si (un),,en st une suite complexe vérifiant la relation de récurrence ([R), de polynéme caractéristique P, alors :

— Si P admet deux racines complexes distinctes r1 et 7o, alors il existe A, yu € C tels que
VneN, u, = Arl + ury.
— Si P admet une seule racine complexe rg, alors il existe A, u € C tels que

VneN, u, = (A+pun)rg.

Remarque. Les résultats ci-dessus donnent dans tous les cas la forme du terme général de la suite, il suffit alors de
trouver les nombres \ et p a partir des termes ug et u; en résolvant un systeme.

Exercice 5. Déterminer I'unique suite complexe (u,), .y telle que

ug =0, up =1+ 4i,
VneN, upta = (3 —21)upt1 —5(1 —i)uy,

Solution. Le polynome caractéristique associé est P = X2 — (3 — 2i)X + 5(1 — i), de discriminant A = —15 + 8i.
Comme 1 + 4i est racine carrée complexe de A, on obtient que les racines de P sont 2 +1i et 1 — 3i. On sait alors
qu’il existe A, pu € C tels que pour tout n € N, up = A(2 +1)™ + p(1 — 3i)".

Comme up = A+ p et ug = A(2+1) + p(1 — 3i), on obtient que A = 1 et p = —1. Par conséquent, pour tout n € N,
onau,=(2+1)"—(1-3i)"

Théoreme - Suites récurrentes linéaires d’ordre 2 : cas réel K = R
Si (un),,ey €st une suite réelle vérifiant la relation de récurrence ([3), de polynéme caractéristique P, alors :

— Si P admet deux racines réelles distinctes r; et ro, alors il existe A, u € R tels que
VneN, u, = Ar{’ + pry.
— Si P admet une seule racine réelle rg, alors il existe A, u € R tels que
VneN, u, = (A+pun)rg.
— Si P admet deux racines distinctes complexes conjuguées rel? et e~ alors il existe \, u € R tels que

VneN, u, =r" (Acos(nf) + pusin(nd)).

, . . . , Uy = 0 Uy = 1
Exemples. 1. Déterminons 'unique suite réelle (u telle que ’ ’
P d ( n)nEN d { VneN, Unjio = Upy1 + Up.
Le polynéme caractéristique associé a la récurrence ci-dessus est P = X2 — X — 1, qui a pour racines r; = 1+2\/g
et ro = 1*2‘/5. On sait alors qu’il existe A, u € R tels que

VneN, u, = A’ + pry.

A+p=0
Ary 4+ pre =1

1 1+5\" [1-+5\"
VneN, wu, = — — .
v/5 2 2
UOZ]., U1=2,
VneN, upio = Upy1 — Up.

1

. On en déduit que \ = 7 et p

Ainsi, ug = A+ p et up = %1 + prg, ce qui donne {

s

Finalement,

2. Déterminons I'unique suite réelle (u,),,.y telle que {

A o . 7N ’ . . . i iT
Le polyndme caractéristique associé & la récurrence ci-dessus est P = X2 — X +1, qui a pour racines 1+;‘/§ =e's
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1-iy/3
et ;

= e_i

3. On sait alors qu'il existe \, € R tels que

VneN, u, = )\cos% +,usin%.

A=1
Ainsi, ug = A et ug = %—Fu?, ce qui donne { A\
2 TH

I

nmw nmw
VyneN, wu, = cos?—i-\/gsin—

—1
- 2(1 nrt /3 mr) — 908 (n )7r.

§COS?+TSin? 3

U()=27 U1=9,

Exercice 6. Déterminer 'unique suite réelle (uy,), .y telle que { Wn e N, i — 6ty 1 — Iy,

Le polyndme caractéristique associé & la récurrence ci-dessus est P = X2 —6X 4+ 9 = (X — 3)2, qui a pour unique
racine 3. Ainsi, il existe A\, u € R tels que Vn € N, u, = (A + pn)3". Comme alors up = A et uy = 3(A+ p), on a

A=2 A=2 n
{3()\_’_”):9, donc {“ 1 et Vne N, u, = (2+n)3".

Lycée Montesquieu
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