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Chapitre 11

Limites – Continuité

Dans tout le chapitre, f est une fonction définie sur un intervalle I de R (non vide et non réduit à un point), à valeurs
réelles, et a désigne un point de l’intervalle I ou une extrémité de I.

I Limite d’une fonction
1. Définitions et premières propriétés

– On dit que f admet pour limite ℓ P R en a P R, et on note fpxq ÝÑ
xÑa

ℓ., si

@ε ą 0, Dη ą 0, @x P I, |x ´ a| ă η ñ |fpxq ´ ℓ| ă ε.

– On dit que f admet pour limite `8 en a P R, et on note fpxq ÝÑ
xÑa

`8, si

@A ą 0, Dη ą 0, @x P I, |x ´ a| ă η ñ fpxq ą A.

De même, on dit que f admet pour limite ´8 en a P R si @A ă 0, Dη ą 0, @x P I, |x´a| ă η ñ fpxq ă A.

Définition - Limite en un point

Remarques.

– Il faut comprendre la définition de la limite de la manière intuitive suivante : f admet ℓ P R pour limite en a si
fpxq est arbitrairement proche de ℓ, pourvu que x soit assez proche de a.

– On étend cette définition au cas où f est définie sur une partie quelconque A de R et a est un point adhérent à
A, c’est-à-dire la limite (finie) d’une suite à valeurs dans A.

Comme pour les suites, on ne peut écrire lim
xÑa

fpxq qu’après avoir justifié l’existence de la limite.

Exemple. La fonction f : s0,`8r Ñ R
x ÞÑ 1

x

vérifie fpxq ÝÑ
xÑ0

`8.

Démonstration. Soit A ą 0. En posant η “ 1
A

, on a : @x P R‹
`, |x| ă η ñ 1

x
ą 1

η
“ A.

η

A

Si `8 est une extrémité de I, on dit que :

‹ f admet ℓ P R pour limite en `8, et on note fpxq ÝÑ
xÑ`8

ℓ, si

@ε ą 0, DB ą 0, @x P I, x ą B ñ |fpxq ´ ℓ| ă ε,

‹ f admet `8 pour limite en `8, et on note fpxq ÝÑ
xÑ`8

`8, si

@A ą 0, DB ą 0, @x P I, x ą B ñ fpxq ą A,

‹ f admet ´8 pour limite en `8, et on note fpxq ÝÑ
xÑ`8

´8, si

@A ă 0, DB ą 0, @ P I, x ą B ñ fpxq ă A.

Définition - Limite en `8

Remarques.

– On définit de manière analogue les limites d’une fonction en ´8 en remplaçant « DB ą 0, @x ą B » dans les
propositions quantifiées par « DB ă 0, @x ă B ».
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– Les inégalités sont choisies strictes dans toutes ces définitions, mais les notions sont inchangées en choisissant
des inégalités larges (par exemple : @x ě B, fpxq ě A). On pourra donc indifféremment utiliser l’une ou l’autre
des écritures.

– Si a P R et ℓ P R, alors
fpxq ÝÑ

xÑa
ℓ ô fpxq ´ ℓ ÝÑ

xÑa
0 ô |fpxq ´ ℓ| ÝÑ

xÑa
0.

Exemple. La fonction f : x ÞÑ 1
x admet pour limite 0 en `8.

Démonstration. Soit ε ą 0. En posant B “ 1
ε
, on a : @x P R‹

`, x ą B ñ
ˇ

ˇ

1
x

ˇ

ˇ “ 1
x

ă ε.

Une adaptation de la preuve de l’unicité de la limite d’une suite donne l’unicité de la limite d’une fonction en un point
de R.

Si f admet une limite en a P R, alors cette limite est unique.

Théorème - Unicité de la limite

Propriété vraie sur un voisinage. Soit a P R. On dit que f vérifie une propriété P au voisinage de a :

– s’il existe η ą 0 tel que f vérifie P sur IXsa ´ η, a ` ηr, dans le cas où a P R
– s’il existe B P R tel que f vérifie P sur IXsB,`8r, dans le cas où a “ `8.
– s’il existe B P R tel que f vérifie P sur IXs ´ 8, Br, dans le cas où a “ ´8.

Si f admet une limite finie ℓ en a P R, alors f est bornée au voisinage de a.

Théorème

Démonstration. On suppose a P R. Comme fpxq ÝÑ
xÑa

ℓ, il existe η ą 0 tel que si |x ´ a| ă η, alors |fpxq ´ ℓ| ă 1.
Ainsi,

@x P IXsa ´ η, a ` ηr, |fpxq| “ |fpxq ´ ℓ ` ℓ| ď |fpxq ´ ℓ| ` |ℓ| ď 1 ` |ℓ|.

On a bien montré que f est bornée sur IXsa ´ η, a ` ηr. Les autres cas se traitent de la même manière.

Si f possède une limite finie en un point a de I, alors fpxq ÝÑ
xÑa

fpaq.

Théorème

Démonstration. Raisonnons par l’absurde : on suppose que fpxq ÝÑ
xÑa

ℓ et ℓ ­“ fpaq.

On pose ε “ |fpaq ´ ℓ|. On sait qu’il existe η ą 0 tel que pour tout x P I vérifiant |x ´ a| ă η, on a |fpxq ´ ℓ| ă ε. En
choisissant x “ a, on obtient alors |fpaq ´ ℓ| ă ε, ce qui est une contradiction.

2. Limites à gauche, à droite

Si a P R, on dit que f admet une limite ℓ à gauche en a si la restriction f IXs´8,ar admet ℓ pour limite en a. On
note alors fpxq ÝÑ

xÑa´
ℓ. En d’autres termes,

˛ fpxq ÝÑ
xÑa´

ℓ P R si : @ε ą 0, Dη ą 0, @x P I, a ´ η ă x ă a ñ |fpxq ´ ℓ| ă ε,

˛ fpxq ÝÑ
xÑa´

`8 si : @A ą 0, Dη ą 0, @x P I, a ´ η ă x ă a ñ fpxq ą A.

Le cas où la limite à gauche vaut ´8 est analogue.
De même, f admet une limite ℓ à droite en a si la restriction f IXsa,`8r admet ℓ pour limite en a. On note alors
fpxq ÝÑ

xÑa`
ℓ.

Définition - Limite à gauche, limite à droite
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Remarque. Lorsque la limite à gauche (resp. à droite) en a existe, on la note parfois fpa´q (resp. fpa`q).

Exemples.

– Si k P Z, alors on a : txu ÝÑ
xÑk´

k ´ 1, et txu ÝÑ
xÑx`

k.

– On a : tanx ÝÑ
xÑ π

2
´

´8, et tanx ÝÑ
xÑ π

2
`

`8.

Remarques.

– L’existence de la limite à gauche ou à droite en a ne dépend ni de l’existence,
ni de la valeur de fpaq.

– Interprétation graphique. Lorsque la limite (à gauche ou à droite) de f en a
est infinie, on dit que la courbe représentative de f a une asymptote verticale
d’équation x “ a.

– Les limites à droite et à gauche, si elles existent, peuvent être distinctes,
et peuvent différer de fpaq si cette valeur existe.

a

Soit un réel a P I qui n’est pas une extrémité de I.

˛ Si f est définie en a et ℓ P R, alors fpxq ÝÑ
xÑa

ℓ ô

´

fpxq ÝÑ
xÑa´

ℓ, fpxq ÝÑ
xÑa`

ℓ et fpaq “ ℓ
¯

.

˛ Si f n’est définie pas définie en a et ℓ P R, alors fpxq ÝÑ
xÑa

ℓ ô

´

fpxq ÝÑ
xÑa´

ℓ et fpxq ÝÑ
xÑa`

ℓ
¯

.

Théorème - Limite et limites à gauche, à droite

Démonstration. Nous traitons le premier point, le second en étant une adaptation.

– Si fpxq ÝÑ
xÑa

ℓ, alors il est clair que fpxq ÝÑ
xÑa´

ℓ et fpxq ÝÑ
xÑa`

ℓ. On a aussi montré fpaq “ ℓ ci-dessus.

– Si maintenant fpxq ÝÑ
xÑa´

ℓ, fpxq ÝÑ
xÑa`

ℓ et fpaq “ ℓ, on fixe ε ą 0, et on sait qu’il existe η1, η2 P R‹
` tels que

@x P I, a ´ η1 ă x ă a ñ |fpxq ´ ℓ| ă ε et @x P I, a ă x ă a ` η2 ñ |fpxq ´ ℓ| ă ε.

Si on pose η “ minpη1, η2q, on a alors pour tout x P I, |x ´ a| ă η ñ |fpxq ´ ℓ| ă ε, du fait que fpaq “ ℓ.

3. Caractérisation séquentielle de la limite

Si ℓ P R, alors

fpxq ÝÑ
xÑa

ℓ ô pour toute suite pxnqnPN P IN telle que xn ÝÑ
nÑ`8

a, fpxnq ÝÑ
nÑ`8

ℓ.

Théorème - Caractérisation séquentielle de la limite

Démonstration. On suppose ici a P R et ℓ P R, les autres cas sont des adaptations directes.

– Supposons que fpxq ÝÑ
xÑa

ℓ. Considérons pxnqnPN P IN telle que xn ÝÑ
nÑ`8

a, et montrons que fpxnq ÝÑ
nÑ`8

ℓ.

On fixe ε ą 0. On sait qu’il existe η ą 0 si x P I est tel que |x ´ a| ă η, alors on a |fpxq ´ ℓ| ă ε. Comme
xn ÝÑ

nÑ`8
a, il existe N P N tel que pour tout n ě N , on a |xn ´ a| ă η. Par conséquent, on a |fpxnq ´ ℓ| ă ε.

– Montrons la deuxième implication par contraposée : on suppose que fpxq ÝÑ
xÑa

{ ℓ, i.e. il existe ε ą 0 tel que

@η ą 0, Dx P I, |x ´ a| ă η et |fpxq ´ ℓ| ě ε.

Ainsi, pour tout n P N‹ (en choisissant η “ 1
n ), il existe un réel xn P I tel que |xn ´ a| ă 1

n et |fpxnq ´ ℓ| ě ε.
Ceci entraîne que xn ÝÑ

nÑ`8
a et fpxnq ÝÑ

xÑa
{ ℓ.

Remarque. Pour montrer qu’une fonction n’admet pas de limite en a, il suffit donc par exemple :

– de trouver une suite pxnq P IN telle que xn ÝÑ
nÑ`8

a et pfpxnqq n’a pas de limite,

– de trouver deux suites pxnq, pynq P IN de limite a telles que pfpxnqq et pfpynqq ont des limites distinctes.
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Exemple. La fonction cos n’admet pas de limite en `8.
Démonstration. Pour tout n P N, on pose xn “ 2nπ et yn “ p2n` 1qπ. Les suites pxnq et pynq tendent toutes deux
vers `8. Par ailleurs, pour tout n P N, on a alors cosxn “ 1 et cos yn “ ´1, donc les suites pcosxnq et pcos ynq

n’ont pas même limite.

Remarque. On a de même aussi une caractérisation séquentielle pour les limites à gauche et à droite en un point :

fpxq ÝÑ
xÑa´

ℓ ô pour toute suite pxnqnPN P IN telle que xn ÝÑ
nÑ`8

a et @n P N, xn ă a, fpxnq ÝÑ
nÑ`8

ℓ.

4. Limites et opérations

On déduit de la caractérisation séquentielle de la limite d’une fonction que les opérations sur les limites de fonctions ont
les mêmes propriétés que les opérations sur les limites de suites (addition, produit, multiplication par un réel, inverse),
vues dans le chapitre Suites réelles. On se contente donc ici de détailler l’effet de la composition de fonctions sur
les limites.

Soient f : I Ñ R et g : J Ñ R deux fonctions réelles telles que fpIq Ă J . Si a un point ou une extrémité de I et
ℓ P R, alors

fpxq ÝÑ
xÑa

b et gpyq ÝÑ
yÑb

ℓ ñ gpfpxqq ÝÑ
xÑa

ℓ.

Théorème - Composition de limites

Démonstration. Traitons le cas où a, ℓ P R. On fixe ε ą 0. On sait qu’il existe δ ą 0 tel que pour tout y P J tel
que |y ´ b| ă δ, on a |gpyq ´ ℓ| ă ε. Par ailleurs, il existe η ą 0 tel que pour tout x P I tel que |x ´ a| ă η, on a
|fpxq ´ b| ă δ. Ainsi,

@x P I, |x ´ a| ă η ñ |fpxq ´ b| ă δ ñ |gpfpxqq ´ ℓ| ă ε.

Ceci montre que gpfpxqq ÝÑ
xÑa

ℓ.

5. Limites et inégalités

Comme ci-dessus, la caractérisation séquentielle des limites de fonctions entraîne que les résultats sur les limites et
inégalités vus dans le chapitre Suites réelles sont directement transposables ici.

Si f et g sont deux fonctions définies sur I possédant une limite finie en a, et si f ď g au voisinage de a, alors

lim
xÑa

fpxq ď lim
xÑa

gpxq.

Théorème - Passage à la limite des inégalités

Comme pour les suites, il convient de remarquer que si f ă g sur un voisinage de a, on a bien sûr toujours
lim
xÑa

fpxq ď lim
xÑa

gpxq, mais on n’a pas l’inégalité stricte en général.

Les inégalités strictes deviennent larges à la limite.

Si f admet une limite ℓ P R en a, alors :

– pour tout m ă ℓ, on a f ą m au voisinage de a,
– pour tout M ą ℓ, on a f ă M au voisinage de a.

Théorème - Limites et inégalités strictes

Remarque. On en déduit : si f et g sont deux fonctions ayant une limite en a et limxÑa fpxq ă limxÑa gpxq, alors
f ă g au voisinage de a.

Si f, g, h sont trois fonctions réelles définies sur I et ℓ P R, alors on a les propriétés suivantes.

– Encadrement : si g ď f ď h au voisinage de a et gpxq ÝÑ
xÑa

ℓ, hpxq ÝÑ
xÑa

ℓ, alors fpxq ÝÑ
xÑa

ℓ.

Théorème - Encadrement, minoration, majoration
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– Minoration : si g ď f au voisinage de a et gpxq ÝÑ
xÑa

`8, alors fpxq ÝÑ
xÑa

`8.

– Majoration : si f ď g au voisinage de a et gpxq ÝÑ
xÑa

´8, alors fpxq ÝÑ
xÑa

´8.

Exemple. Soient f, g sont deux fonctions définies sur I telles que f est bornée et gpxq ÝÑ
xÑa

0, alors fpxqgpxq ÝÑ
xÑa

0.

En effet, si f est bornée par M , alors on a 0 ď |fpxqgpxq| ď M |gpxq| pour tout x P I. On conclut par encadrement.

6. Théorème de la limite monotone

– Si f est une fonction monotone, elle admet une limite à gauche et à droite en tout point où cela a un sens.
De plus, si a P I et f est croissante, on a

lim
xÑa´

fpxq ď fpaq ď lim
xÑa`

fpxq.

– Si f est croissante sur l’intervalle sa, br, alors :

si f n’est pas majorée, on a fpxq ÝÑ
xÑb

`8, et si f n’est pas minorée, on a fpxq ÝÑ
xÑa

´8.

Théorème - Théorème de la limite monotone

Remarque. Les énoncés sont analogues si f est décroissante.

Démonstration. On se contente de montrer que, dans le cas où f est croissante sur sa, br et minorée, f admet une
limite à droite en a. Les autres cas sont analogues. Posons m “ inftfpxq, x Psa, bru, et montrons que fpxq ÝÑ

xÑa`
m.

Soit ε ą 0. On sait qu’il existe x0 Psa, br tel que fpx0q ă m ` ε. Par croissance de f , on a alors pour tout x Psa, x0r,
m ď fpxq ď fpx0q ă m ` ε, donc 0 ď fpxq ´ m ă ε. Ainsi, en posant η “ x0 ´ a, on a :

@x P I, a ă x ă a ` η ñ |fpxq ´ m| ă ε,

donc f admet m pour limite à droite en a.

7. Cas de fonctions à valeurs complexes

Il est possible d’étendre la définition de la notion de limite aux fonctions f : I Ñ C. Les définitions sont les mêmes, à
ceci près qu’on a recours au module dans C au lieu de la valeur absolue dans R.

Soient un fonction f : I Ñ C et a un point ou une extrémité de I. On dit que f admet ℓ P C pour limite en a si :

˛ @ε ą 0, Dη ą 0, @x P I, |x ´ a| ă η ñ |fpxq ´ ℓ| ă ε, si a P R,
˛ @ε ą 0, DB ą 0, @x ą B, |fpxq ´ ℓ| ă ε, si a “ `8.

Le cas où a “ ´8 est analogue.

Définition - Limite d’une fonction à valeurs complexes

Soient un fonction f : I Ñ C et a un point ou une extrémité de I et ℓ P C. On a

fpxq ÝÑ
xÑa

ℓ ô

#

Re fpxq ÝÑ
xÑa

Re ℓ

Im fpxq ÝÑ
xÑa

Im ℓ

Théorème - Limite et parties réelles, imaginaires

Démonstration. Comme pour les suites, la preuve repose directement sur la remarque :

|Repfpxqq ´ Repℓq|

| Impfpxqq ´ Impℓq|

*

ď |fpxq ´ ℓ| “
a

|Repfpxqq ´ Repℓq|2 ` |Impfpxqq ´ Impℓq|2.

On en déduit que les propriétés sur les limites finies : unicité, caractère borné localement, caractérisation séquentielle,
lien avec les opérations, sont encore vraies dans ce cadre.

Les résultats sur les inégalités et la monotonie ne tiennent bien sûr pas pour les fonctions à valeurs complexes :
les inégalités n’ont pas de sens dans C.
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II Continuité
1. Continuité en un point

Soit a P I.

– On dit que f est continue en a si fpxq ÝÑ
xÑa

fpaq, c’est-à-dire :

@ε ą 0, Dη ą 0, @x P I, |x ´ a| ă η ñ |fpxq ´ fpaq| ď ε.

– On dit que f est continue à gauche en a si f IXs´8,ar est continue en a, c’est-à-dire fpxq ÝÑ
xÑa´

fpaq.

– On dit que f est continue à droite en a si f IXsa,`8r est continue en a, c’est-à-dire fpxq ÝÑ
xÑa`

fpaq.

Définition - Continuité en un point, continuité à gauche, à droite

Remarque. La fonction f est continue en a P I si et seulement si elle admet une limite en a.

Exemple. La fonction x ÞÑ txu est continue en tout point de RzZ. Elle est par ailleurs continue à droite en tout k P Z,
mais pas continue à gauche.

On déduit directement des résultats sur les limites de fonctions le résultat suivant.

La fonction f est continue en a P I si et seulement si elle est continue à gauche et à droite en a.
Théorème - Continuité en un point et continuité à gauche, à droite

Exemple. La fonction f : x ÞÑ

"

e1{x si x ‰ 0
0 si x “ 0

est continue à gauche et à droite en 0, donc continue en 0.

Les résultats sur les limites et opérations entrainent directement :

– une combinaison linéaire de fonctions continue en a est continue en a,
– un produit de fonctions continues en a est continu en a,
– l’inverse d’une fonction continue en a qui ne s’annule pas au voisinage de a est continue en a.
– si f est continue en a et g définie et continue en fpaq, alors g ˝ f est continue en a.

2. Fonction prolongeable par continuité

Soit une fonction f : Iztau Ñ R. On dit que f est prolongeable par continuité en a si f admet une limite finie en
a. La fonction f̃ : I Ñ R définie par :

f̃ : x ÞÑ

#

fpxq si x ‰ a
lim
xÑa

fpxq si x “ a

est continue sur I et est appelée prolongement continu de f sur I.
Dans la pratique, on notera toujours ce prolongement f .

Définition-théorème - Prolongement par continuité

Exemple. La fonction f définie sur s0,`8r par

f : x ÞÑ
sinx

x

est prolongeable par continuité en 0, d’après la limite usuelle sin x
x ÝÑ

xÑ0
1.

Cf

Attention à ne pas confondre une fonction définie en x0 et continue en x0 et une fonction non définie en x0

prolongeable par continuité en x0.
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3. Caractérisation séquentielle de la continuité

Le résultat suivant découle directement de la caractérisation séquentielle de la limite.

f est continue en a ô pour tout suite pxnqnPN P IN telle que xn ÝÑ
nÑ`8

a, fpxnq ÝÑ
nÑ`8

fpaq.

Théorème - Caractérisation séquentielle de la continuité

Remarque. En utilisant la contraposée de ce résultat, on peut montrer qu’une fonction est discontinue en un point
a : il suffit de trouver une suite pxnqnPN de I qui tend vers a, mais qui n’a pas de limite, ou encore deux telles suites
qui ont des limites distinctes.

Exemple. La fonction 1Q, définie par 1Q : x ÞÑ

"

1 si x P Q,
0 sinon est discontinue en tout point.

Démonstration. Soit a P R.

– Par densité de Q dans R, il existe une suite pxnqnPN telle que xn ÝÑ
nÑ`8

a. Pour tout n P N, on a fpxnq “ 1.

– Par densité de RzQ dans R qu’il existe une suite pynqnPN telle que yn ÝÑ
nÑ`8

a. Pour tout n P N, on a fpynq “ 0.

Comme pfpxnqqnPN et pfpynqqnPN n’ont pas même limite, on en déduit que f n’est pas continue en a.

4. Point de vue global

On dit que f est continue sur I si elle continue en tout point de I. On note C pI,Rq ou C 0pI,Rq l’ensemble des
fonctions continues sur I. On note parfois plus simplement C pIq ou C 0pIq.

Définition - Continuité sur un ensemble

Remarque. Les fonctions usuelles : fonctions polynomiales, valeur absolue, fonctions ln, exp, fonctions puissances,
fonctions trigonométriques, sont continues sur leur ensemble de définition.

– on utilise les résultats généraux sur les intervalles où on peut le faire,
– on étudie séparément (calculs de limite) les points qui posent problème.

Pour montrer qu’une fonction est continue

5. Le théorème des valeurs intermédiaires

Le résultat suivant est un cas particulier du résultat global qui suivra. On se ramène souvent à ce cas de figure lorsqu’on
utilise le théorème des valeurs intermédiaires.

Si f est continue sur l’intervalle I et a, b P I sont tels que a ď b et fpaq et fpbq sont de signes opposés, alors il
existe x P ra, bs tel que fpxq “ 0.

Théorème - Théorème des valeurs intermédiaires

Démonstration. On suppose par exemple fpaq ď 0 et fpbq ě 0. On introduit les suites panqnPN et pbnqnPN définies par
récurrence de la manière suivante.

– On pose a0 “ a et b0 “ b. On a alors fpa0q ď 0 et fpb0q ě 0.
– Soit n P N. On suppose an et bn construits tels que fpanq ď 0 et fpbnq ě 0, et bn ´ an “ 1

2n pb ´ aq. On note
mn “ 1

2 pan ` bnq.

˛ Si fpmnq ě 0, alors on pose an`1 “ an et bn`1 “ mn.
˛ Si fpmnq ă 0, alors on pose an`1 “ mn et bn`1 “ bn.

Dans les deux cas, on a alors fpan`1q ď 0 et fpbn`1q ě 0, et bn`1 ´ an`1 “ 1
2 pbn ´ anq “ 1

2n`1 pb ´ aq. Par
ailleurs, on a an`1 ě an et bn`1 ď bn.

Ainsi, les suites panqnPN et pbnqnPN sont respectivement croissantes et décroissantes, et bn ´ an ÝÑ
nÑ`8

0.
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Comme les suites panqnPN et pbnqnPN sont adjacentes, elles convergent vers une même limite x P ra, bs. Par continuité,
on a fpanq ÝÑ

nÑ`8
fpxq, ce qui donne fpxq ď 0. De même, fpbnq ÝÑ

nÑ`8
fpxq, donc fpxq ě 0. Finalement, fpxq “ 0.

Remarques.

– Le théorème ci-dessus se reformule : toute fonction continue sur un intervalle qui change de signe s’annule sur
cet intervalle.

– La contraposée du théorème s’écrit : si une fonction continue sur un intervalle ne s’annule pas sur cet intervalle,
alors elle est de signe constant.

a b

fpaq

fpbq

y

Si f est continue sur un intervalle I et a, b P I avec a ă b. Pour tout
y compris entre fpaq et fpbq, il existe (au moins) un réel x P ra, bs
tel que

fpxq “ y.

Autrement dit, l’image de f est un intervalle.

Théorème - Théorème des valeurs intermédiaires, version générale

Démonstration. Il suffit d’appliquer le théorème ci-dessus à la fonction continue g : x ÞÑ fpxq ´ y. Si par exemple
fpaq ď y ď fpbq, alors on a gpaq “ fpaq ´ y ď 0 et gpbq “ fpbq ´ y ě 0, donc il existe x P ra, bs tel que gpxq “ 0,
c’est-à-dire fpxq “ y.
Montrons que fpIq est un intervalle : si y1, y2 P fpIq avec y1 ď y2, il s’agit de montrer que ry1, y2s Ă fpIq. On fixe
y P ry1, y2s. On sait qu’il existe a1, a2 P I tels que y1 “ fpa1q et y2 “ fpa2q. Comme y P rfpa1q, fpa2qs, on déduit de
ce qui précède qu’il existe x P I tel que fpxq “ y, donc y P fpIq.

Remarques.

– Le théorème des valeurs intermédiaires est un théorème d’existence : il établit qu’il existe un tel réel x, mais ne
donne pas sa valeur explicite. Par ailleurs, ce réel n’est pas nécessairement unique.

– Le théorème devient faux si la fonction n’est pas continue, ou si l’on ne la considère pas sur un intervalle !

Exemple. Cherchons à approcher les racines du polynôme X3 ´ 4X ` 1, en appliquant le théorème des valeurs
intermédiaires à la fonction continue f : x ÞÑ x3 ´ 4x ` 1.

– Comme fp0q “ 1 et fp1q “ ´2, donc il existe x2 Ps0, 1r tel que fpx2q “ 0.
– Comme fp1q “ ´2 et fp2q “ 1, donc il existe x3 Ps1, 2r tel que fpx3q “ 0.
– Comme fpxq ÝÑ

xÑ´8
´8 et fp0q “ 1, il existe x1 Ps ´ 8, 0r tel que fpx1q “ 0.

On peut par ailleurs affiner ce dernier encadrement : comme fp´3q “ ´14 et fp´2q “ 1, on a en fait x1 Ps ´ 3,´2r.

Il arrive fréquemment qu’on ait besoin d’introduire une fonction dite “auxiliaire” pour utiliser le théorème des valeurs
intermédiaires. Il sera alors important de choisir la fonction la plus adaptée à la situation.

Exemple. Toute fonction f continue de r0, 1s dans r0, 1s admet un point fixe.
Démonstration. On introduit la fonction auxiliaire g : x ÞÑ fpxq ´ x. définie sur r0, 1s. La fonction g est continue
comme somme de fonctions continues sur r0, 1s. Il s’agit de montrer qu’il existe x P r0, 1s tel que gpxq “ 0. On a :

– fp0q P r0, 1s donc fp0q ě 0, ce qui donne gp0q ě 0,
– fp1q P r0, 1s donc fp1q ď 1, ce qui donne gp1q ď 0.

D’après le théorème des valeurs intermédiaires, on sait qu’il existe alors x P r0, 1s tel que gpxq “ 0, soit fpxq “ x.

6. Le théorème de la bijection

Si f est une continue et strictement monotone sur l’intervalle I, alors

– l’ensemble J “ fpIq est un intervalle, et f définit une bijection de I sur J ,

Théorème - Théorème de la bijection

Lycée Montesquieu 8



MPSI – Mathématiques 2025-26

– la bijection réciproque f´1 : J Ñ I est également continue et strictement monotone sur J , de même sens
de variation que f .

Remarque. Ce théorème nous a permis en particulier de définir les fonctions exp, arccos, arcsin et arctan, et donne
aussi leur continuité.

Démonstration.

– Le théorème des valeurs intermédiaires assure que fpIq est un intervalle. Comme f est strictement monotone, f
est par ailleurs injective sur I. On en déduit que f est une bijection de I sur J “ fpIq.

– Soit a P J qui n’est pas l’extrémité gauche de J . Montrons que f´1pyq ÝÑ
yÑa´

f´1paq.

Nous avons déjà montré que f´1 est strictement monotone, de même monotonie que f . Ainsi, la limite ci-dessus
existe par le théorème de la limite monotone, notons-la ℓ :

f´1pyq ÝÑ
yÑa´

ℓ, donc fpf´1pyqq ÝÑ
yÑa´

fpℓq

par continuité de f . Comme pour tout y P J , fpf´1pyqq “ y, on a a “ fpℓq par unicité de la limite. Ceci se récrit
ℓ “ f´1paq. On peut conduire le même raisonnement pour la limite à droite, ce qui donne la continuité de f´1

en a. S’il se présente, le cas de l’extrémité gauche est plus simple car il ne requiert que la continuité à droite.

Remarque. On peut par ailleurs décrire de manière précise l’ensemble fpIq, selon le type d’intervalle de I et la
monotonie de f . Par exemple, si f est continue strictement croissante sur I et

˛ I “ ra, bs, où a, b P R, alors fpIq “ rfpaq, fpbqs,
˛ I “sa, br, où a P R Y t´8u et b P R Y t`8u, alors fpIq “

ı

lim
xÑa`

fpxq, lim
xÑb´

fpxq

”

.

Exemple. Montrons qu’il existe une unique solution dans R` à l’équation ex ` x “ 2.

– La fonction f : x ÞÑ ex ` x est continue, strictement croissante comme somme de deux fonctions continues,
strictement croissantes.

– Par le théorème de la bijection, f définit alors une bijection de I “ r0,`8r sur fpIq “ r1,`8r.

Comme 2 P fpIq, on a bien existence et unicité d’une solution à l’équation dans R`.

Exercice 1. Montrer que l’équation 2x ` 3x “ 5x admet une unique solution sur R‹
`.

La démonstration du résultat suivant n’est pas exigible, et fait l’objet d’un exercice de TD.

Si f est continue et injective sur l’intervalle I, alors f est strictement monotone.
Théorème

7. Théorème des bornes atteintes

Rappel. On appelle segment de R un intervalle fermé borné, c’est-à-dire un intervalle de la forme ra, bs avec a, b P R
et a ď b.

Toute fonction continue sur un segment non vide est bornée et atteint ses bornes.
Théorème - Théorème des bornes atteintes

Démonstration. Soit f une fonction continue sur le segment non vide ra, bs. Montrons que f est majorée et at-
teint son maximum, le cas du minimum est similaire. L’ensemble A “ tfpxq, x P ra, bsu est non vide, on note alors
M “ supA P R Y t`8u. On sait qu’il existe une suite pynqnPN d’éléments de A telle que yn ÝÑ

nÑ`8
M .

Pour tout n P N, on considère xn P ra, bs tel que fpxnq “ yn. Ainsi, la suite pxnqnPN est bornée, et admet donc une
sous-suite convergente dans ra, bs : xφpnq ÝÑ

nÑ`8
x P ra, bs. Par continuité, on a alors yφpnq “ fpxφpnqq ÝÑ

nÑ`8
fpxq.

Or yφpnq ÝÑ
nÑ`8

M , donc par unicité de la limite, M “ fpxq, et supA “ maxA “ M , donc f atteint son maximum.
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L’image d’un segment par une fonction continue est un segment.

Corollaire

Démonstration. On sait par le théorème des valeurs intermédiaires que l’image d’un segment par une fonction continue
est un intervalle, dont on sait par le théorème des bornes atteintes qu’il contient ses bornes, c’est donc un segment.

Le théorème des bornes atteintes est illustré par la figure de gauche ci-dessous. Attention : lorsque la fonction n’est
pas continue, fpIq n’est pas nécessairement un intervalle (voir figure de droite).

I

fpIq

max
xPI

fpxq

min
xPI

fpxq

fpIq

max
xPI

fpxq

min
xPI

fpxq

Exemple. Toute fonction continue périodique sur R est bornée.
Démonstration. Si f est T -périodique, avec T ą 0, alors f est continue sur le segment r0, T s donc bornée sur r0, T s :
il existe M ě 0 tel que @x P r0, T s, |fpxq| ď M.

Pour tout x P R, il existe un entier n P Z tel que nT ď x ă pn ` 1qT . Ainsi,par T -périodicité de f , on a :
|fpxq| “ |fpx ´ nT q| ď M , car x ´ nT P r0, T s.

8. Cas de fonctions à valeurs complexes

Comme pour les limites, on peut aisément étendre la définition de la continuité aux fonctions à valeurs complexes.

Soit f : I Ñ C.

– Si a P I, on dit que f est continue en a si fpxq ÝÑ
xÑa

fpaq.
– Si f est continue en tout point de I, on dit que f est continue sur I.

On note C pI,Cq, ou encore C 0pI,Cq l’ensemble des fonctions continues sur I à valeurs dans C.

Définition - Fonction continue à valeurs complexes

Le résultat suivant repose directement sur le résultat analogue sur les limites.

Une fonction f : I Ñ C est continue sur I si et seulement si les fonctions Re f et Im f sont continues sur I.
Théorème - Fonction continue à valeurs complexes et parties réelle et imaginaire

Les résultats sur la caractérisation séquentielle et les opérations sur les fonctions continues vus plus haut à propos des
fonctions à valeurs réelles sont encore valables pour les fonctions à valeurs complexes.

En revanche, les théorèmes des valeurs intermédiaires et de la bijection n’ont pas de sens dans ce cadre, et ne sont
donc pas valables.
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