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Chapitre 12

Arithmétique dans Z

I Divisibilité
1. Généralités

Soient a, b P Z. On dit que a divise b et on note a | b s’il existe un entier k P Z tel que b “ ka. On dit alors que b
est un multiple de a et a est un diviseur de b.
On note aZ “ tka, k P Zu les multiples de a.

Définition - Multiples, diviseurs

i. La relation de divisibilité est une relation d’ordre sur N.
ii. Si a | b et a | c, alors pour tous u, v P Z, a | bu ` cv.

iii. Si a | b et c | d, alors ac | bd, et en particulier, ak | bk pour tout k P N.
iv. Si m ­“ 0, alors a | b ô ma |mb.

Théorème - Propriétés de la relation de divisibilité

Démonstration.

i. Nous avons déjà montré ce résultat dans le chapitre Applications et relations binaires.
ii. Soient k, l P Z tels que b “ ka et c “ la. Si u, v P Z, alors on a bu ` cv “ pku ` lvqa, donc a | bu ` cv.

iii. Soient k, l P Z tels que b “ ka et d “ lc. Alors, on a bd “ kl ac, donc ac | bd.
iv. Le sens direct est immédiat. S’il existe k P Z tel que mb “ kma, alors en divisant par m, on a b “ ka.

Remarque. La relation de divisibilité n’est pas une relation d’ordre sur Z, car elle n’est pas antisymétrique : si a, b P Z,
on a a | b et b | a ô |a| “ |b| ô a “ ˘b.

2. Division euclidienne

Soient a P Z et b P N‹. Il existe un unique couple pq, rq P Z ˆ N tel que

a “ bq ` r et 0 ď r ă b.

Une telle écriture est appelée division euclidienne de a par b, et on appelle q le quotient et r le reste de la division
euclidienne.

Théorème - Division euclidienne

Remarques.

– Si q est le quotient dans la division euclidienne de a par b, alors q “
X

a
b

\

.
– On peut étendre ce résultat au cas où b P Z‹ : il existe un unique couple pq, rq P Z ˆ N tel que a “ bq ` r et
0 ď r ă |b|.

Démonstration.

– Existence. On suppose a ě 0, et on considère l’ensemble A “ tk P N, a ´ kb ě 0u. Si k P A, on a k ď kb ď a,
donc A est majoré par a. Ainsi, A possède un plus grand élément, qu’on note q. Par ailleurs, on a a´pq`1qb ă 0,
donc a ´ bq ă b. Comme on a aussi a ´ bq ě 0, on obtient le résultat en posant r “ a ´ bq.
Si a ă 0, on raisonne de la même manière en considérant m “ mintk P N, a ` kb ě 0u, et on pose q “ ´m. On
a alors a ´ bq ě 0 et comme a ` pm ´ 1qb ă 0, on a a ´ bq ă b.
Unicité. Supposons qu’il existe deux couples pq1, r1q et pq2, r2q comme dans l’énoncé. Alors bq1 ` r1 “ bq2 ` r2,
donc bpq1 ´ q2q “ r2 ´ r1. Comme r1, r2 P J0, bJ, on a ´b ă r2 ´ r1 ă b, d’où ´1 ă q2 ´ q1 ă 1. Par conséquent,
l’entier q1 ´ q2 est nul, ce qui donne q1 “ q2, puis r1 “ r2.
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Remarque. On peut généraliser le résultat de la division euclidienne au cas où b P Z‹, de la manière suivante : il
existe un unique couple pq, rq P Z ˆ N tel que a “ bq ` r et 0 ď r ă |b|.

Si a P Z et b P Z‹, alors b | a si et seulement si le reste dans la division euclidienne de a par b est nul.

Corollaire - Caractérisation de la divisibilité dans Z

Démonstration. Par unité du quotient et du reste dans la division euclidienne, le reste dans la division euclidienne
de a par b est nul si et seulement s’il existe q P Z tel que a “ bq, c’est-à-dire si et seulement si b | a.

3. Congruences

Soient a, b, n P Z. On dit que a est congru à b modulo n s’il existe un entier k P Z tel que a “ kn ` b, autrement
dit : n divise a ´ b. On note alors a ” b rns.

Définition - Congruence modulo un entier

Remarques.

– Si a, n P Z, on a : n | a ô a ” 0 rns.
– Si a P Z et n P N‹, le reste r dans la division euclidienne de a par n est l’unique entier de J0, n ´ 1K tel que
a ” r rns.

Soient a, a1, b, b1, n,m P Z.

(i) Si a ” b rns et a1 ” b1 rns, alors a ` a1 ” b ` b1 rns.
(ii) Si a ” b rns et a1 ” b1 rns, alors aa1 ” bb1 rns. En particulier, ak ” bk rns pour tout k P N.

(iii) Si m ­“ 0, alors a ” b rns si et seulement si ma ” mb rmns.

Théorème - Compatibilité avec les opérations

Démonstration.

– (i) et (ii). Si a ” b rns et a1 ” b1 rns, on considère k, l P Z tels que a “ kb ` n et a1 “ lb ` n. On a alors
a ` a1 “ pk ` lqb ` n donc a ` a1 ” b ` b1 rns, et aa1 “ pkln ` kb1 ` lbqn ` bb1, donc aa1 ” bb1 rns.

– (iii). Le sens direct est clair, la réciproque s’obtient en divisant l’égalité ma “ kmb ` mn pour un entier k P Z
par m qui est non nul.

Exemple. Pour tout n P N, 7 divise 23n ´ 1.
On remarque que 23 ” 1 r7s. Ainsi, pour tout n P N, on obtient en élevant à la puissance n que 23n ” 1 ” r7s,
c’est-à-dire 23n ´ 1 ” 0 r7s.

La relation de congruence modulo un entier est une relation d’équivalence sur Z.
Théorème

Démonstration. Si n P N et a, b, c P Z, on a pour commencer, si a ” b rns, il existe k P Z tel que a “ kn ` b, donc
b “ ´kn ` a et b ” a rns, donc ” est symétrique. Ensuite, a “ 0n ` a, donc a ” a rns, et ” est réflexive. Par ailleurs,
si a ” b rns et b ” c rns, il existe k, l P Z tels que a “ kn ` b et b “ ln ` c, donc a “ pk ` lqn ` c, donc a ” c rns, donc
” est transitive.

4. Nombres premiers

On dit qu’un entier p ě 2 est premier si ses seuls diviseurs positifs sont 1 et p. Si p ě 2 n’est pas premier, on dit
qu’il est composé. On note P l’ensemble des nombres premiers.

Définition - Nombre premier

Exemple. Les entiers 2, 3, 5, 7, 11, 13, 17, 19, 23 sont premiers.
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Remarque. Un entier n ě 2 est composé si et seulement s’il possède un diviseur d P J2, n ´ 1K.
Tout nombre entier n ě 2 est un produit de facteurs premiers.

Théorème - Factorisation première (existence)

Démonstration. Montrons par récurrence forte que tout entier n ě 2 est un produit de facteurs premiers.

– Initialisation. 2 est premier, donc un produit d’un seul facteur premier.
– Hérédité. Soit n ě 2. On suppose que tout entier k P J2, nK est un produit de facteurs premiers, et on considère

l’entier n ` 1. Soit n ` 1 est premier, donc produit d’un seul facteur premier, soit il ne l’est pas, et s’écrit donc
n`1 “ ab avec a, b P J2, nK. Par hypothèse de récurrence, les entiers a et b s’écrivent comme facteurs de nombres
premiers, donc n ` 1 “ ab également, ce qui conclut.

Remarque. Il y a aussi unicité de cette décomposition en produits de facteurs premiers, à ordre près des facteurs.
Nous démontrerons ce résultat plus loin dans ce chapitre.

Il existe une infinité de nombres premiers.
Théorème - P est infini

Démonstration. Supposons qu’il existe un nombre fini r de nombres premiers, qu’on écrit p1, . . . , pr. On considère
alors l’entier n “ p1 . . . pr ` 1. Comme n n’est pas premier, il possède un diviseur premier, qui est pi pour un certain
i P J1, rK. Par conséquent, pi divise n ´ p1 . . . pr, ce qui entraîne que pi | 1, ce qui est contradictoire.

Si un entier n ě 2 n’est pas premier, alors il possède un diviseur premier p ď
?
n.

Théorème

Démonstration. Soit n ě 2 non premier. On sait que n admet un diviseur premier p. Si p ď
?
n, alors le résultat

est prouvé. Sinon, on peut écrire n “ pk avec k ă
?
n. L’entier k possède lui aussi un diviseur premier q qui vérifie

q ď k ă
?
n. Comme q est aussi un diviseur de n, ceci conclut.

Le résultat ci-dessus permet d’obtenir un procédé algorithmique pour trouver tous les nombres premiers inférieurs à
un entier donné.

Crible d’Ératosthène. Pour obtenir tous les nombres premiers inférieurs à un entier donné n, on peut procéder
de la manière suivante.

– On commence par 2 dont on sait qu’il est premier, et on élimine tous les entiers de J2, nK qui sont multiples
de 2, et ne sont donc pas premiers.

– On s’intéresse au premier entier non éliminé, qu’on identifie comme étant premier (il n’a pas de diviseur
premier qui lui est strictement inférieur), et on élimine tous ses multiples dans J2, nK.

– On répète ainsi l’opération tant qu’on considère les multiples d’entiers k tels que k ď
?
n.

On aura alors sélectionné tous les nombres premiers de J2, nK car on a vu que tout nombre composé de cet
ensemble possède un diviseur premier inférieur à

?
n. Le tableau ci-dessous donne l’exemple du cas n “ 100.

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30
31 32 33 34 35 36 37 38 39 40
41 42 43 44 45 46 47 48 49 50
51 52 53 54 55 56 57 58 59 60
61 62 63 64 65 66 67 68 69 70
71 72 73 74 75 76 77 78 79 80
81 82 83 84 85 86 87 88 89 90
91 92 93 94 95 96 97 98 99 100
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II Plus grand diviseur commun, plus petit multiple commun
1. PGCD de deux entiers

Dans la suite, on note Da l’ensemble des diviseurs d’un entier a P Z.

Remarques.

– Pour tout a P Z, 1 P Da et ´1 P Da.
– Si a ­“ 0, alors Da est majoré par |a| : pour tout k P Da, il existe d P Z‹ tel que a “ kd, on a donc |k| ď |kd| “ |a|.
– On a D1 “ t´1, 1u et D0 “ Z.

Si a, b P Z ne sont pas tous deux nuls, l’ensemble Da X Db des diviseurs communs à a et b admet un plus grand
élément appelé PGCD de a et b, qu’on note a ^ b. En d’autres termes, a ^ b “ maxpDa X Dbq.
On convient par ailleurs que 0 ^ 0 “ 0.

Définition-théorème - PGCD

Démonstration. Si a ­“ 0, l’ensemble Da XDb est majoré par |a| car Da l’est. Il est par ailleurs non vide car il contient
1, donc admet un plus grand élément. Si a “ 0, alors b ­“ 0 et Da X Db est majoré par |b| donc la situation est
similaire.

Exemples. – Si a P Z, on a a ^ 1 “ 1 et a ^ 0 “ |a|, du fait que Da X D1 “ D1, et Da X D0 “ Da.
– Si a, b P Z, on a a ^ b “ |a| ^ |b|.
– Si a P Z et d est un diviseur positif de a, alors a ^ d “ d : comme Dd Ă Da, on a Da X Dd “ Dd.

Soient a P Z et p un nombre premier. Alors : – soit p | a et a ^ p “ p,
– soit p {| a et a ^ p “ 1.

Théorème - PGCD d’un entier avec un nombre premier

Démonstration. Si p | a, alors a ^ p “ p d’après ce qui précède. Si maintenant p {| a, comme Dp “ t´p,´1, 1, pu, on a
Da X Dp “ t´1, 1u, donc a ^ p “ 1.

Si a, b, r P Z et a ” r rbs, alors Da X Db “ Db X Dr, et donc a ^ b “ b ^ r.

Théorème

Démonstration. On peut écrire a “ bq ` r, où q P Z. Ainsi, si d divise b et r, alors d divise a, ce qui donne
Db XDr Ă Da XDb. L’autre inclusion est obtenue de la même manière : si d divise a et b, alors d divise r “ a´ bq.

Le résultat ci-dessus justifie l’utilisation de l’algorithme d’Euclide détaillé ci-dessous pour calculer le PGCD de deux
entiers.

Algorithme d’Euclide pour le calcul du PGCD.
Si a, b P N, on note r0 “ a et r1 “ b, et on effectue la procédure suivante.
Pour k P N‹ :

– Si rk ­“ 0 : on effectue la division euclidienne de rk´1 par rk, et on note rk`1 son reste. On a alors
rk´1 ” rk`1 rrks, ce qui entraîne que rk`1 ă rk, et rk ^ rk´1 “ rk`1 ^ rk.

– Si rk “ 0, la procédure s’arrête, et a ^ b “ rk´1.

Ainsi, a ^ b est le dernier reste non nul de la famille des restes successifs de l’algorithme d’Euclide.
Cas où a, b P Z : comme a ^ b “ |a| ^ |b|, on se ramène au cas précédent.

Remarques.

– La propriété rk`1 ă rk si rk ­“ 0, assure l’existence d’un entier k0 tel que rk0 “ 0. En d’autres termes, l’algorithme
s’arrête.
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– Comme, rk´1 ^ rk “ rk ^ rk`1 pour tout k, on a par récurrence immédiate que rk´1 ^ rk “ r0 ^ r1 “ a ^ b.
Ainsi,

a ^ b “ rk0´1 ^ rk0
“ rk0´1,

car rk0
“ 0. En d’autres termes, l’algorithme fournit le bon résultat. On dit que “a ^ b “ rk´1 ^ rk” est un

invariant de boucle.

Exemple. Calcul du PGCD de 660 et 126 :
On a 660 ^ 126 “ 6 : 660 “ 126 ˆ 5 ` 30

126 “ 30 ˆ 4 ` 6
30 “ 6 ˆ 5 ` 0

L’algorithme peut s’écrire de la manière suivante en Python.

def pgcd(a,b):
while (b!=0):

a,b = b,a%b
return a

Algorithme d’Euclide.

Une conséquence du résultat ci-dessus est que les diviseurs communs à a et b sont exactement les diviseurs de a ^ b,
ce qu’exprime le théorème suivant.

Si a, b P Z et d “ a ^ b, alors Da X Db “ Dd.
Théorème

Démonstration. En reprenant les notations de l’algorithme d’Euclide, on a rk´1 ” rk`1 rrks pour tout k. Ainsi, nous
avons vu que Drk´1

X Drk “ Drk X Drk`1. Une récurrence immédiate montre alors que

Da X Db “ Drk0
´1 X Drk0

“ Drk0
´1,

où k0 est l’entier tel que rk0
“ 0. Comme d “ rk0

´ 1, ceci conclut.

Remarque. On retiendra que si d | a et d | b, alors d | a ^ b.

Si a, b, k P Z, alors pkaq ^ pkbq “ |k| a ^ b.

Théorème - Factorisation du PGCD

Démonstration. Le cas k “ 0 étant clair, on suppose que k ­“ 0.

– On remarque que |k|a ^ b divise ka et kb, donc on sait que |k|a ^ b divise pkaq ^ pkbq.
– Comme k divise ka et kb, on en déduit que k divise pkaq ^ pkbq : il existe d P Z tel que pkaq ^ pkbq “ kd. Ainsi,

comme kd divise ka et kb et k ­“ 0, on déduit que d | a et d | b, donc d | a ^ b. Finalement, kd divise |k|a ^ b.

Finalement, pkaq ^ pkbq et |k| a ^ b sont des entiers naturels qui se divisent mutuellement, ils sont égaux.

2. Relations de Bézout

Soient a, b P Z. Il existe u, v P Z tels que au ` bv “ a ^ b. Une telle relation est appelée relation de Bézout.
Théorème - Relation de Bézout pour deux entiers

Remarque. Le couple pu, vq d’une relation de Bézout n’est pas unique, loin s’en faut ! Par exemple 9 ^ 6 “ 3, et
3 “ 1 ˆ 9 ` p´1q ˆ 6 “ p´5q ˆ 9 ` 8 ˆ 6.

Démonstration. On reprend les notations de l’algorithme d’Euclide : r0 “ a, r1 “ b, et pour tout k P N‹ tel que
rk ­“ 0, on écrit rk´1 “ qk`1rk ` rk`1, division euclidienne de rk´1 par rk. On montre ensuite par récurrence double
que pour tout k P N, il existe uk, vk P Z tels que rk “ uka ` vkb.
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– Initialisation : en posant u0 “ 1, v0 “ 0, u1 “ 0 et v1 “ 1, on a bien r0 “ u0a ` v0b et r1 “ u1a ` v1b.
– Hérédité : soit k P N‹, on suppose qu’il existe uk´1, vk´1, uk, vk P Z tels que rk´1 “ uk´1a ` vk´1b et
rk “ uka ` vkb. Ainsi,

rk`1 “ rk´1 ´ qk`1rk “ puk´1 ´ qk`1ukq a ` pvk´1 ´ qk`1vkq b.

On obtient le résultat en posant uk`1 “ uk´1 ´ qk`1uk et vk`1 “ vk´1 ´ qk`1vk.

Comme on sait qu’il existe un entier k0 tel que rk0
“ 0 et a ^ b “ rk0´1, on a donc a ^ b “ uk0´1a ` vk0´1b.

Remarque. La preuve ci-dessus fournit en fait des relations de récurrence permettant de calculer uk et vk à chaque
étape. En ajoutant ce calcul à l’algorithme d’Euclide, ceci permet d’obtenir en plus une relation de Bézout. Ce nouvel
algorithme porte le nom d’algorithme d’Euclide étendu, et peut se schématiser de la manière suivante.

Algorithme d’Euclide étendu.
On peut synthétiser la réalisation de l’algorithme d’Euclide étendu dans
un tableau contenant les restes successifs, les quotients, ainsi que les entiers
uk et vk.

On commence par écrire r0, r1 et les premières valeurs u0, v0, u1, v1, puis
on utilise les relations de récurrence.

rk qk uk vk

a 1 0
b 0 1
...

...
...

...

Exemple. Recherche d’une relation de Bézout pour les entiers a “ 323 et b “ 119.
˛ 323 “ 119 ˆ 2 ` 85,
˛ 119 “ 84 ˆ 1 ` 34,
˛ 85 “ 34 ˆ 2 ` 17,
˛ 34 “ 17 ˆ 2 ` 0.

On obtient a ^ b “ 17, et 17 “ 3 ˆ 323 ´ 8 ˆ 119.

rk qk uk vk

323 1 0
119 0 1
85 2 1 ´2

34 1 ´1 3

17 2 3 ´8

Si a, b P Z et d “ a ^ b, alors aZ ` bZ “ dZ.

Corollaire

Démonstration. On sait qu’il existe une relation de Bézout au0 ` bv0 “ d. Ainsi, d P aZ ` bZ, donc les multiples de
d appartiennent à aZ ` bZ. Autrement dit, dZ Ă aZ ` bZ.
Si n P aZ ` bZ, on peut écrire n “ au ` bv avec u, v P Z. Comme d | a et d | b, on a d | au ` bv, donc au ` bv P dZ.

Remarque. La réciproque est vraie : si d P N est tel que aZ ` bZ “ dZ, alors d “ a ^ b.

3. PGCD d’une famille finie d’entiers

On peut aisément généraliser la notion de PGCD à un nombre fini d’entiers.

Soient a1, . . . , an P Z non tous nuls. On appelle PGCD de a1, . . . , an le plus grand des diviseurs communs de
a1, . . . , an, noté a1 ^ . . . ^ an. En d’autres termes, a1 ^ . . . ^ an “ maxDa1

X . . . X Dan
.

On convient que 0 ^ . . . ^ 0 “ 0.

Définition - PGCD d’un nombre fini d’entiers

Remarques.

– Il découle de la définition que le PGCD est associatif : si a, b, c P Z, alors a ^ b ^ c “ a ^ pb ^ cq “ pa ^ bq ^ c.
Ceci fournit un moyen de calculer le PGCD d’un nombre fini d’entiers en calculant une succession de PGCD de
deux entiers.

– De même que pour le cas de deux entiers, on a Da1
X . . . X Dan

“ Da1^...^an
.

– Le résultat de factorisation se généralise : si a1, . . . , an, k P Z, alors pka1q ^ . . . ^ pkanq “ |k|a1 ^ . . . ^ an.
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Soient a1, . . . , an P Z. Il existe u1, . . . , un P Z tels que a1u1 ` . . . ` anun “ a1 ^ . . . ^ an. On dit qu’une telle
égalité est une relation de Bézout de a1, . . . , an.

Théorème - Relation de Bézout pour une famille finie d’entiers

Exercice 1. Déterminer une relation de Bézout des entiers 4, 6 et 9.

4. PPCM

Soient a, b P Z‹. L’ensemble aZX bZXN‹ admet un plus petit élément, appelé PPCM de a et b. On le note a_ b.
En d’autres termes, a _ b “ minpaZ X bZ X N‹q.
On convient par ailleurs que a _ b “ 0 si a “ 0 ou b “ 0.

Définition-théorème - PPCM de deux entiers

Démonstration. Si a, b P Z‹ sont non nuls, l’ensemble aZ X bZ X N‹ contient l’entier ab. En tant que sous-ensemble
non vide de N‹, il admet bien un plus petit élément.

Si a, b P Z et m “ a_ b, alors aZX bZ “ mZ. En d’autres termes, les multiples communs à a et b sont exactement
les multiples de a _ b.

Théorème

Démonstration. Si l’un des deux entiers a et b est nul, le résultat est clair : aZ X bZ “ t0u.
Si a, b P Z‹, on remarque que comme m est multiple de a et b, tous ses multiples le sont, autrement dit, mZ Ă aZXbZ.
Montrons maintenant que aZ X bZ Ă mZ. On raisonne par l’absurde et on suppose qu’il existe k P aZ X bZ tel que
k R mZ. On écrit alors k “ mq ` r la division euclidienne de k par m, on a ainsi r P J1,m ´ 1K. Comme k et mq sont
des éléments de aZXbZ, on en déduit que r P aZXbZ, ce qui est une contradiction car 0 ă r ă minpaZXbZXN‹q.

Remarque. On retiendra que pour tout n P Z, si a |n et b |n, alors pa _ bq |n.

III Nombres premiers entre eux

Soient a, b P Z. On dit que a et b sont premiers entre eux si a ^ b “ 1.
Définition - Nombres premiers entre eux

Remarques.

– Les entiers a et b sont premiers entre eux si et seulement si Da X Db “ t´1, 1u.
– Les entiers a et b sont premiers entre eux si et seulement s’ils n’ont aucun facteur premier en commun.

Soient a, b P Z non tous deux nuls et d “ a ^ b. Il existe a1 et b1 premiers entre eux tels que
"

a “ da1

b “ db1

Théorème

Démonstration. Comme a, b sont non tous deux nuls, on a d “ a ^ b ­“ 0. On note a1, b1 les entiers tels que a “ da1 et
b “ db1. Comme d “ pda1q ^ pdb1q, on a 1 “ a1 ^ b1.

Soient a1, . . . , an P Z.

– On dit que a1, . . . , an sont premiers entre eux deux à deux si pour tous i, j P J1, nK avec i ­“ j, ai ^ aj “ 1.
– On dit que a1, . . . , an sont premiers entre eux dans leur ensemble si a1 ^ . . . ^ an “ 1.

Définition - Nombres premiers entre eux deux à deux – nombres premiers entre eux dans leur ensemble

Si a1, . . . , an sont premiers entre eux deux à deux, alors ils sont premiers entre eux dans leur ensemble, mais la
réciproque est fausse.

Par exemple, les nombres 2, 4 et 5 sont premiers entre eux dans leur ensemble (ils n’ont pas de diviseurs communs
autre que 1 et ´1), mais ils ne sont pas premiers entre eux deux à deux, car 2 ^ 4 “ 2.
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Soient a, b P Z. Les entiers a et b sont premiers entre eux si et seulement s’il existe u, v P Z tel que au` bv “ 1.
Théorème - Théorème de Bézout

Démonstration. Si a et b sont premiers entre eux, on sait qu’il existe u, v P Z tels que au ` bv “ a ^ b “ 1.
Réciproquement, s’il existe u, v P Z tels que au ` bv “ 1, alors tout diviseur commun de a et b divise 1, ce qui donne
Da X Db “ t´1, 1u, puis a ^ b “ 1.

Exemple. Pour tout n P Z, les entiers n et n` 1 sont premiers entre eux : pn` 1q ´ n “ 1 est une relation de Bézout.

Remarque. Soient a P Z et n P N‹. Si a ^ n “ 1, alors le théorème de Bézout donne l’existence de u P Z tel que
au ” 1 rns. On dira que a est inversible modulo n.

Exercice 2. Résoudre dans Z l’équation 3x ” 2 r7s.
On a 3 ˆ 5 ´ 7 ˆ 2 “ 1, donc 3 ˆ 5 ” 1 r7s (on a inversé 3 modulo 7). Ainsi,

3x ” 2 r7s ô 5 ˆ 3x ” 5 ˆ 2 r7s ô x ” 3 r7s.

Les solutions sont donc tous les entiers de la forme 7k ` 3, où k P Z.

– Lemme de Gauss. Soient a, b, c P Z. Si a | bc et a ^ b “ 1, alors a | c.
– Lemme d’Euclide. Soient a, b P Z et p un nombre premier. Si p | ab, alors p | a ou p | b.

Théorème - Lemme de Gauss, lemme d’Euclide

Démonstration.

– Par hypothèse, il existe k P Z tel que bc “ ka, et on une relation de Bézout : au ` bv “ 1 avec u, v P Z. En
multipliant par c, on obtient acu ` bcv “ c, donc acu ` kav “ c, soit apcu ` kvq “ c, donc a | c.

– Comme p est premier, si p {| a, alors p ^ a “ 1. On peut donc appliquer le lemme de Gauss : comme p | ab, on a
p | b.

Remarque. Une conséquence du lemme de Gauss est que si ma ” mb rcs et m ^ c “ 1, alors a ” b rcs. En effet
ma ” mb rcs se récrit c |mpa ´ bq. Si m ^ c “ 1, alors c | a ´ b, autrement dit a ” b rcs.
Alternativement, on peut aussi voir le résultat en remarquant que comme m ^ c “ 1, il existe un inverse u de m
modulo c. Ainsi mua ” mub rcs, i.e. a ” b rcs.

Soient a, b, n P Z.

(i) Si a ^ n “ 1 et b ^ n “ 1, alors ab ^ n “ 1.
(ii) Si a ^ b “ 1, a |n et b |n, alors ab |n.

Théorème

Démonstration.

(i) Raisonnons par l’absurde et supposons que ab et n ont un facteur premier p commun. Alors p | ab donc, par le
lemme d’Euclide, soit p | a, soit p | b. Dans le premier cas, p P Da X Dn, ce qui est impossible, et dans le second
cas, p P Db X Dn, ce qui est également impossible.

(ii) Par hypothèse, il existe k, l P Z tels que n “ ka “ lb. Ainsi, a | lb, et comme a ^ b “ 1, le lemme de Gauss
entraîne que a | l, c’est-à-dire qu’il existe m P Z tel que l “ ma. Par conséquent, n “ mab, et ab |n.

Remarque. Les deux résultats ci-dessus se généralisent aisément au cas d’un nombre fini d’entiers, par des récurrences
assez immédiates : pour a1, . . . , ak, n P Z,

(i) si a1 ^ n “ . . . “ ak ^ n “ 1, alors pa1 . . . akq ^ n “ 1,
(ii) si a1, . . . , ak premiers entre eux deux à deux, et a1 |n, . . . , ak |n, alors a1 . . . an |n.

Exemple. Si p est un nombre premier et k P J1, p ´ 1K, alors p divise
`

p
k

˘

.

Démonstration. On remarque que k!
`

p
k

˘

“ ppp´1q . . . pp´k`1q, donc p divise k!
`

p
k

˘

. Comme p est premier
et k ă p, les entiers i ď k sont premiers avec p, donc leur produit également : k! ^ p “ 1. Par le lemme de
Gauss, on en déduit donc que p |

`

p
k

˘

.
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Si p est un nombre premier et n P Z, alors :

i. np ” n rps,
ii. si p ^ n “ 1, alors np´1 ” 1 rps.

Théorème - Petit théorème de Fermat

Démonstration.

i. On monte le résultat pour n P N en raisonnant par récurrence.

– Si n “ 0, on a np “ 0, donc le résultat est vrai.
– Soit n P N. On suppose que np ” n rps. On a alors

pn ` 1qp “ np `

p´1
ÿ

k“1

ˆ

p

k

˙

nk ` 1 ” np ` 1;” n ` 1 rps,

car pour tout k P J1, p ´ 1K, on sait que p divise
`

p
k

˘

, donc
p´1
ř

k“1

`

p
k

˘

nk ” 0 rps.

Si n P Z, on a n ” r rps avec r P J0, p ´ 1K. Comme rp ” r rps, on a aussi np ” n rps.
ii. Si de plus p ^ n “ 1, alors il existe u P Z inverse de n modulo p, c’est-à-dire que nu ” 1 rps, donc en multipliant

l’égalité précédente par u, on obtient np´1 ” 1 rps.

IV Factorisation première
1. Décomposition en produit de facteurs premiers

Si n P N avec n ě 2, alors n s’écrit de manière unique sous la forme

n “ pα1
1 . . . pαr

r ,

où p1, . . . , pr sont des nombres premiers tels que p1 ă . . . ă pr et α1, . . . , αr P N‹.

Théorème - Factorisation première

Démonstration.

– L’existence a été prouvée plus haut.
– Unicité. On suppose que n possède deux décompositions en produits de facteurs premiers comme dans l’énoncé.

Quitte à choisir des exposants nuls dans les décompositions, on peut supposer que les facteurs premiers sont les
mêmes :

n “ pα1
1 . . . pαr

r “ pβ1

1 . . . pβr
r , où α1, . . . , αr, β1, . . . , βr P N.

Soit i P J1, rK. On a alors n “ pαi
i a “ pβi

i b, où a et b sont des produits de nombres premiers distincts de pi, donc
premiers avec p1. Par conséquent, on a pi ^ a “ 1, puis pβi

i ^ a “ 1. Le lemme de Gauss donne alors pβi

i | pαi
i ,

donc βi ď αi. De même, pαi
i ^ b “ 1, donc pαi

i | pβi

i , et αi ď βi. Finalement, αi “ βi, ce qui conclut.

2. Valuation p-adique

Soient p un nombre premier et n P Z‹. On appelle valuation p-adique de n et on note vppnq le plus grand entier
k P N tel que pk |n.

Définition - Valuation p-adique

Remarque. En d’autres termes, si p P P et n P N‹, alors vppnq est l’exposant de p dans la factorisation première de
n (en retenant un exposant nul si p ne divise pas n). On peut écrire la factorisation première de n P N‹ :

n “
ź

pPP

pvppnq.

On note que le produit est fini, car il existe un nombre fini de nombres premiers p tels que vppnq ­“ 0.
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Exemple. Comme 20 “ 22 ˆ 5, on a v2p20q “ 2 et v5p20q “ 1.

Remarque. Si n P Z et p P P, alors : – vppnq “ α si et seulement si n s’écrit n “ pαn1, où p ne divise pas n1,
– vppnq ą 0 si et seulement si p |n.

Si n,m P Z et p est un nombre premier, alors vppnmq “ vppnq ` vppmq.

Théorème - Valuation et produit

Démonstration. On peut écrire n “ pvppnqn1 et m “ pvppmqm1, où p ne divise ni n1 ni m1. Ainsi, on obtient que
nm “ pvppnq`vppmqn1m1. Par le lemme d’Euclide, p ne divise pas n1m1, ce qui assure que vppnmq “ vppnq `vppmq.

Remarque. Ceci fournit une manière plus directe de présenter la preuve de l’irrationalité de
?
2 rencontrée dans le

chapitre Rudiments de logique :

Supposons que
?
2 P Q, et notons

?
2 “

p
q avec p, q P N‹. On a alors p2 “ 2q2, ce qui entraîne que

v2pp2q “ v2p2q2q, c’est-à-dire 2v2ppq “ 2v2pqq ` 1, qui entraîne 0 ” 1 r2s, il y a contradiction.

Si a, b P Z, alors a | b si et seulement si pour tout p P P, vppaq ď vppbq.

Théorème - Valuation et divisibilité

Démonstration. Si a | b, il existe k P Z tel que b “ ka. Ainsi, si p P P, on a vppbq “ vppkq ` vppaq ě vppaq. La
réciproque est claire en considérant les factorisations premières de a et b.

Remarques.

– Si n ě 2 a pour factorisation première n “ pα1
1 . . . pαr

r , alors ses diviseurs positifs sont exactement les entiers de
la forme pβ1

1 . . . pβr
r avec βi ď αi pour tout i P J1, rK.

– On en déduit que le nombre de diviseurs positifs d’un entier n P N‹ est donné par
ź

pPP

pvppnq ` 1q.

En effet, si la factorisation première de n s’écrit pvp1 pnq

1 . . . p
vpr pnq
r , il y a autant de diviseurs positifs que de choix

de r-uplets d’exposants pα1, . . . , αrq avec αi P J0, vpi
pnq ´ 1K, c’est-à-dire pvp1

pnq ´ 1q . . . pvpr
pnq ´ 1q.

Si a, b P Z‹, alors a ^ b “
ś

pPP

pminpvppaq,vppbqq, et a _ b “
ś

pPP

pmaxpvppaq,vppbqq.

Théorème - Valuations et PGCD, PPCM

Démonstration. Pour tout p P P, on note αp “ vppaq et βp “ vppbq.

– On considère un entier d dont on note la factorisation première d “
ś

pPP pγp . On a d P Da XDb si et seulement
si pour tout p P P, γp ď αp et γp ď βp, c’est-à-dire γp ď minpαp, βpq, d’où le résultat.

– De même, si m P N a pour factorisation première m “
ś

pPP pγp , alors m P aZX bZ si et seulement si pour tout
p P P, γp ě αp et γp ě βp, c’est-à-dire γp ě maxpαp, βpq, d’où le résultat.

Si a, b P Z, d “ a ^ b et m “ a _ b, alors dm “ |ab|.

Corollaire - Produit du PGCD et du PPCM

Démonstration. Si a “ 0 ou b “ 0, alors m “ 0, donc dm “ |ab|. Si a, b P Z‹, il suffit d’utiliser les factorisations
premières : |a| “

ś

pPP pαp et |b| “
ś

pPP pβp :

dm “
ź

pPP

pminpαp,βpq`maxpαp,βpq “
ź

pPP

pαp`βp “
ź

pPP

pαp

ź

pPP

pβp “ |ab|.

Exemple. On a 300 “ 22ˆ3ˆ52 et 168 “ 23ˆ3ˆ7, donc 300^168 “ 22ˆ3 “ 12, et 300_168 “ 23ˆ3ˆ52ˆ7 “ 4200.

Remarque. On peut alors trouver le PPCM de deux entiers à partir de leur PGCD.
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