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Chapitre 14

Polynomes

Dans ce chapitre, K désigne le corps R ou le corps C.

I  Anneau des polynémes

1. L’anneau K[X]|

Définition - Polynéme
On appelle polynéome a coefficients dans K la donnée d’une suite (ap)geny d’éléments de K nulle a partir d’un
certain rang. On choisit de noter ce polynéme

+
P = Z%Xk =ay+a1 X +...+a, X",
k=0

ou a; = 0 pour tout k£ = n. On appelle X 'indéterminée du polynome, et, si k € N, on dit que a; est le k-éme
coefficient de P. On choisit de le noter ¢ [P].

On note K[X] ’ensemble des polynomes & coefficients dans K.

Remarques.

— La somme de la définition n’est pas réellement infinie, les coefficients étant tous nuls a partir d’un certain rang.

— Deux polynoémes sont égaux si et seulement si la suite de leurs coefficients, qui les définit, est la méme. On
retiendra donc que deux polynoémes sont égaux si et seulement si leurs coefficients sont égaux.

— La notion d’indéterminée recouvre le fait que nous allons chercher a “incarner” les polynémes dans n’importe
quel ensemble F pour lequel, si x € F, ag + a1z + ... + a,z™ a un sens, c’est-a-dire un ensemble muni de trois

lois : KxE — E ExE — E ExXE — E
(Az) = Az (z,y) — z+y’ (z,y) — x*y
La troisieme justifie Pécriture z*, le premiére justifie ’écriture apz® et la deuxiéme la somme de ces éléments.
Exemples.

— Le polynéme donné par la suite nulle est appelé le polyndme nul, on le note 0, ou Og[x7-
— Un polyndéme donné par la suite (ax)ken avec ag = 0 pour tout k > 0 est appelé polynome constant.
— On appelle mondéme un polyndéme dont tous les coefficients sont nuls sans éventuellement I'un d’entre eux.

+ao +ao0
Opérations dans K[X]. Si P = Y apX*et Q= Y b X" sont deux polynomes et \ € K, alors :
k=0 k=0

+00
Somme : P + Q est défini comme le polynome Y. (ax + by)X*.
k=0

o

<

+00
Multiplication par un scalaire : AP est défini comme le polynéme Y. AazXF.
k=0

<&

+oo [ k
Produit : PQ est défini comme le polynome > (Z aibki>Xk.
k=0 \i=0
o +00
Composition : P o () est défini comme le polynéme donné par Y. aiQF.
k=0

&

_ 4o
o Conjugaison : si K = C, on définit P = ] a,X".
k=0

Lycée Montesquieu 1



MPSI — Mathématiques 2025-26

Remarque. L’expression des coefficients du produit de deux polynoémes est motivée par le calcul suivant pour x € K
+00 . +o00 . +00 +00 = H_] +00 +0 +00 k &
Doazt ) | ) bl Z Z a;bjz't S a2t = X D] abr_i ) 2,
=0 =0 1=075=0 1=0 k=1 k=0 \¢=0

ou on a interverti les sommes dans la sommes double triangulaire. On rappelle que, contrairement aux apparences, les
sommes sont finies.

 Théoréme - Anneau K[X]

L’ensemble K[X | muni des lois de composition internes + et x décrites ci-dessus est un anneau commutatif ayant
pour éléments neutres respectifs le polynome nul Og[x] et le polynome lg[x) constant égal a 1.

Démonstration.
o (K[XT], +) est un groupe abélien dont I'élément neutre est Ogyy : tout polynéome P € K[X] a pour inverse le
polynoéme —P.

o x est associative, commutative et distributive par rapport & + : si P = Z arX®, Q = Z b X* R = Z c XF
k=0 k=0 k=0

k i
[(PQ)R] = ;(Z% i— J) ZZ% i—jCh—i = ZZG’J —jCk—i = Z Zaa i/ Ch— (i’ +7)

1=07=0 7=04i=3 j=04'=0

ko k—j k
pour tout k € N. Ainsi, cx[(PQ)R] = X a;j Y] bicg—jy—ir = X ajcx—j[QR] = cx[P(QR)]. Par ailleurs :
S foar)

k _ k
= 2 aibr_; ik Z vag—iy = x[QP].
i=0 =0

k k k
Pour finir, on a : ¢[P(Q+ R)] = > a;(bp—i + cp—i = D, aibp—i + D, ajck—;) = [PQ + PR]. O
i=0 i=0 i=0

Remarque. Comme K[X] est un anneau commutatif, les formules du binéme et de Bernoulli s’appliquent : pour tous
P,QeK[X]etneN,

n n—1
P + Q Z ( )Pan—k7 j = Qn _ (P _ Q) Z Pan_l_k.
k=0

2. Polyndémes et degré

Définition - Degré, coefficient dominant
+0
Soit P = Z aka.
k=0
— Si P est non nul, on appelle degré de P lentier deg P = max{k € N, a;, = 0}. Par convention, le polyndéme
nul a pour degré —oo.

— Sideg P =n € N, on dit que a, est son coefficient dominant, et on le notera ici cqom[P]. Si cqgom[P] = 1,
on dit que P est unitaire.

Pour tout n € N, on note K,[X] 'ensemble des polynémes de K[X] de degré au plus n.

Remarque. Ky[X] est 'ensemble des polyndmes constants, et peut étre identifié & K.

Théoréme - Degré et opérations
Soient P,Q e K[X] et A\e K*. On a :
(i) deg(P + Q) < max(deg P,deg @), avec égalité : — si deg P = deg @,
() deg(AP) = deg P si A # 0, —sideg P =degQ et caom[P] + taom[@] = 0,
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(ii7) deg(PQ) = deg P + degQ, et si k € N, alors deg P* = k deg P.
(iv) deg(Po Q) = deg P x deg @ si Q n’est pas constant.

Remarque. Les opérations ont lieu dans R : on a —0 + x = —o0 si € N U {—0}.
Démonstration. On note dp = deg P et dg = deg Q.
(7) Si k> max(dp,dg), alors ¢,[P + Q] = ¢x[P] + ¢x[Q] = 0, donc deg(P + Q) < max(dp,dg).
(#i) Le résultat est clair : si A = 0, ¢q,[P] = Acgp[P] = 0.
(#7) Sidp,dgeNetk>dg,onac,[PQ] = zk: abi_; = E aibg—; carsii > dp,a; = 0etsii <k—dg, bp—; = 0.
Ainsi, i=0 i=k—dg

—si k>dp+dg, alors k —dg > dp et la somme est nulle car elle est vide,
—si k =dp + dg, alors ¢[PQ] = aqpbr—dp = @apba, = 0. On en déduit deg PQ = dp + dg.
Sidp =—woudg = —, alors PQ =0, et deg P + deg Q = —o0 = deg PQ), donc 1'égalité est vraie.
(iv) Les points [z} et s’appliquent encore & un nombre fini de polynémes (par récurrence immédiate). Ainsi, on

a deg(Q*) = kdeg Q. Si deg@ = 0, alors P o Q est une somme de polynémes de degrés deux a deux distincts
dont le terme de plus haut degré est aq, Q% , qui est de degré dpdg. O

A\ si Q est constant, on peut avoir deg(QoP) = deg P deg@Q :si P = X?—1et Q = 1, alors degQo P = deg0 = —o0,
mais deg Pdeg @ = 0.

“ Théoréme - Inversibles de K[X]

Les seuls polynémes inversibles de K[X] sont les polynémes constants non nuls.

Démonstration. Si P = X\ € K*, alors PQ = 1 avec QQ = %7 donc P est inversible. Réciproquement, si P est inversible,
alors il existe Q € K[X] tel que PQ = 1, ce qui entraine que deg P + deg Q = 0, donc deg P = deg @ = 0. O

 Théoréeme - Intégrité de K[z]
Si P,QeK[X],alors: PQ=0 < (P=0o0uQ@ =0).

Démonstration. Si P = 0 ou @ = 0, on a bien siir PQ) = 0. Examinons maintenant la réciproque : si PQ = 0, alors
on a deg(PQ) = —o0, ce qui se récrit deg P + deg @ = —o0. Ceci n’est possible que si deg P = —o0 ou deg@Q = —o0,
c’est-a~dire si P =0 ou Q = 0. O

Remarque. Pour rappel, 'intégrité de K[X ] assure qu’on peut simplifier par tout polynéme non nul : si A, B, C € K[X]
avec A non nul, alors AB = AC = B = C. En effet, si AB = AC, alors A(B — C) = Og[x], donc B — C' = Og[x] par
intégrité.

3. Fonctions polynomiales, évaluation

Définition-théoréme - Fonction polynomiale

On appelle fonction polynomiale sur K toute fonction f : K — K de la forme
fix—ay+tax+...+apx",

ou ag, .. .,a, € K. L’ensemble &k des fonctions polynomiales sur K est un sous-anneau de % (K, K).

Démonstration. On a bien sir P < % (K,K). Par ailleurs, la fonction constante égale & 1 est polynomiale, et 7
est stable par différence et par produit. O

Définition-théoréme - Fonction polynomiale associée

+00
Si P= ) apX* e K[X], on appelle fonction polynomiale associée & P la fonction polynomiale
k=0
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+o0
akxk.
0

P :x —
k

Si z € K, on appelle évaluation de P en x le nombre ]B(x) e K.

Théoréme - Polynémes et fonctions polynomiales

L’application ® : P — P est un isomorphisme d’anneaux de K[X] dans 'anneau &k des fonctions polynomiales
sur K.

Démonstration. 11 est clair que ® est un morphisme d’anneaux (les opérations sur les polyndmes ou sur les fonctions
polynomiales ayant le méme effet sur les coefficients), et que ® est surjectif. Nous prouverons I'injectivité plus tard
dans ce chapitre. O

Remarques.

— On aura tendance a encore noter P la fonction polynomiale associée a P. Attention toutefois : ce ne sont pas les
mémes objets mathématiques.

— Le résultat n’est plus vrai si on remplace K par un corps fini, on peut d’ailleurs montrer que I'application ® est
injective si et seulement si K est infini.

— Si z € K, 'application P +— 15(35), dite application d’évaluation est un morphisme d’anneaux de K[X] dans K.

Il Divisibilité dans K[X]

Définition - Multiples, diviseurs
Soient A, B € K[X]. On dit que B divise A et on note B| A s’il existe un polynéme @ € K[X] tel que A = BQ.
On dit alors que A est un multiple de B et B est un diviseur de A.
On note BK[X] = {QB, Q € K[X]} les multiples de B.

Remarque. Si A est non nul et B| A, alors deg B < deg A.

n—1
Exemple. SineN, alors X —1| X" —1: on sait que X" —1 = (X —1) > XF.
k=0

" Théoréme - Division euclidienne dans K[X]
Soient A, B € K[X] avec B = 0. Il existe un unique couple (Q, R) € K[X]? tel que A = BQ + R et deg R < deg B.

Les polynomes @ et R sont appelés respectivement quotient et reste dans la division euclidienne de A par B.

Démonstration.

— Euxistence. Cas deg A < deg B : dans ce cas, @ =0 et R = A conviennent : A = BQ + R et deg R < deg B.

Cas deg A > deg B : Nous allons raisonner par récurrence forte.
Supposons que pour tout k < n, on a existence du quotient et du reste dans la division de A par B lorsque
deg A = k. On suppose deg A = n, et on note a = cgom[A] €t b = cgom|[B], puis

A= A— %X”*degBB.

On a deg A < n car ¢,[A] = ¢,[4] — $cdom[B] = 0. Par hypothese, il existe alors @, R € K[X] tels que
A= BQ+Ret deg R < deg B. Ainsi, A = B(Q + X" 98 B) 4 R, et on a montré qu'on a encore existence
de la division euclidienne lorsque deg A = n.

On note n = deg A. On déduit de ce qui précede que le résultat est vrai lorsque n = deg B, puis, par

récurrence forte, pour tout n > deg B.
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— Unicité. Supposons qu’il existe @1, Q2, R1, R2 € K[X] tels que A = BQ1 + R1 = BQ2 + Rs et deg Ry < deg B,
deg Ry < deg B. Ainsi,

B(Ql — QQ) = R2 — Rl, donc deg(Rg — Rl) = degB + deg(Q1 — QQ)
Si Q1 = Qo, alors deg(Q1 — Q2) = 0, et deg(Re — Ry1) = deg B. Or deg(R2 — R1) < max(deg R;,deg Rs) < deg B
et il y a contradiction. On en déduit Q1 = Q2, puis R; = Rs. O
Remarque. Soient P € K[X] et o € K. Le reste de la division euclidienne de P par X — a est P(a).

En effet, la division euclidienne de P par X — « s’écrit P = (X — )@ + R, ou degR < 1, donc R est
constant. En évaluant en «, on obtient R(«) = P(a), ce qui conclut car R est constant.

Exercice 1. Effectuer la division euclidienne de X3 — 3X?2 par X? — X + 2.
Exercice 2. Factoriser X — 6X?% + 11X — 6.

 Théoréme - Caractérisation de la divisibilité dans K[X]

Si A, B € K[X] et B est non nul, alors B| A si et seulement si le reste dans la division euclidienne de A par B
est nul.

Démonstration. Si le reste dans la division euclidienne est nul, il existe @ € K[X] tel que A = BQ, donc B|A. Si
B| A, lécriture A = BQ avec @ € K[X] est la division euclidienne, donc le reste est nul. O

Théoréeme et définition - Polynémes associés

Si A, B € K[X] deux polynémes non nuls. On a
A|B et B|A < 3reK*, B=)A.

On dit alors que les polynémes A, B sont associés.

Démonstration. 11 est clair que si B = AA avec A € K*, alors les polyndémes sont associés. Réciproquement, si A et B
sont associés, il existe P, Q € K[X] tels que A = BQ et B = AP. On a alors A = APQ, ce qui donne A(PQ —1) = 0.
Par intégrité, on obtient PQ = 1, donc P est inversible dans K[X], et il existe A € K* tel que P = A, ceci conclut. [

Il Polyndmes dérivés

Définition - Polynémes dérivés

+0
Pour tout polynéme P = Y ax X* € K[X], on appelle polynome dérivé de P le polynéme :

k=0
+00 +00
P'= > kap X = Y (k+ Dagp X"
k=1 k=0

On définit par ailleurs les polynémes dérivés successifs de P en posant : o P = P, )
o YneN, P+ = (p()y,

Remarques. — Si P est un polyndéme constant, alors P("") = 0 pour tout k € N*.
- Si P e K[X], alors P =P
400
— Le terme kay X*~! étant nul pour k = 0, on note parfois P’ = . kapX*~1.
k=0

n! n—k .
_nl_xnk Gk <n,
Exemple. SineNet P = X", alors P®) — { (n—F)! LEsn

. . En particulier, P("™) = nl.
0 si k> n.
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Remarque. Si deg P = d > 0, une récurrence aisée sur n donne que pour tout n € [0,d],
d !

d
P = ;;n k(k—1)...(k—n+1)XF" = ;;n = _'n)!Xk—n, (1)

On en déduit le résultat suivant sur le degré de P(™).

" Théoréme - Polyndémes dérivés et degré
Soient P € K[X] et n e N.

— Sin < deg P, alors deg P(") = deg P — n.
— Sin>degP, alors P = (.

Démonstration. Si deg P < 0, le résultat est clair. Sinon, () donne le résultat pour n < deg P. Ainsi, P(?) est
constant, donc ses dérivées successives sont nulles, et P(™) = 0 pour tout n > d. O

Théoréme - Polyndmes dérivés et opérations
Si P,QeK[X] et A\, ueK, alors

(AP +4uQ) = AP +uQ,  (PQY =P Q+PQ, (PoQ)=PoQxQ.

Démonstration. Le premier point est clair. Pour le second, dans le cas K = R, on peut utiliser 'isomorphisme ® entre
R[X] et Panneau des fonctions polynomiales sur R. Si P,Q € R[X], alors

——— —~—/ ~ ~ ~ ~ ~ ~/
@((PQ)') = (PQ) = PQ = (PQ) =PQ+PQ = (I)(P/Q+PQ/).
On en déduit bien que (PQ) = P'Q + PQ'. Le cas K = C s’en déduit en considérant les parties réelles et imaginaires
des polynomes P, Q € C[X].
Le dernier point s’obtient en montrant par une récurrence immédiate que pour tout k € N*, (Q*) = kQ'Q* ! en
utilisant la formule précédente. On a alors, en notant ay les coefficients de P :

+0 +0 +00
(P o Q)/ _ Z ak(Qk)/ — Z kakQ/Qk71 — Z kakafl X Q/ —_ P/ o Q x Q/- O
k=0 k=1 k=1
Remarque. Nous avons utilisé 'isomorphisme d’anneaux entre R[X] et g, ce qui ne tient que parce que R est infini.
Le résultat ci-dessus reste cependant valable pour n’importe quel corps K, méme fini : on peut alors montrer I'égalité
en revenant & I’expression des coefficients du polynéme PQ.

La formule suivante exprime que si deg P = n et si 'on connait les évaluations en a € K des n polynomes dérivés
successifs de P en a, alors on connait tout le polynéme P.

" Théoréme - Formule de Taylor polynomiale
Si PeK,[X] et a € K, alors

Démonstration.

Soit P = 3, a;X" € K[X]. Pour tout ke N, P = 57 i xi~k done PH)(0) = klay, et ap = Z®. Ainsi
- Soit P = ] a; X" € K[X]. Pour tout k € N, —Zk(i_k)! , donc (0) = klag, et ap = —5;—. Ainsi,

=0 =

no pk)
P =3 PT(O)Xk, ce qui conclut dans le cas a = 0.
k=0

— On pose ensuite Q = P(X + a), ce qui entraine que pour tout k € N, Q) (X) = P*)(X +a). On remarque aussi
que P = Q(X — a). Il suffit alors d’appliquer le résultat & @ :
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Q= LOxk_ 5 PU@xE gone P=Q(X—a)= ) L@ (X —q)t. O
k=0 k=0 k=0

Remarque. On note que, dés a présent, on ne note plus P la fonction polynomiale associée a P, mais P.

IV Racines et multiplicité

1. Définitons

Définition - Racine
| Soit P € K[X]. On dit que « € K est une racine de P si P(a) = 0.

Remarque. Tout polynome de R[X] de degré impair admet au moins une racine réelle.

Démonstration. Si P = a, X™ + ... + a1 X + ap € C[X] avec n = deg P impair et a,, > 0 (l'autre cas est
identique), alors on a P(z) — —o0 et P(x) - +00.
r——00 r—+00

Ainsi, le théoréme des valeurs intermédiaires permet de conclure qu'il existe = € R tel que P(z) =0. O

" Théoréme - Racines et factorisation
Soit P € K[X].

i. Si a € K, alors « est une racine de P si et seulement si X — | P.
ii. Plus généralement, si aq,. .., ax sont des racines distinctes de P, alors (X — «aq)... (X — ag) | P.

Démonstration.

i. Nous avons vu que le reste dans la division euclidienne de P par X — « est donné par P(«). Par conséquent, le
reste est nul si et seulement si « est racine de P.

71. Montrons seulement le sens direct, la réciproque étant claire. Supposons que aq, ..., a; sont des racines distinctes
de P, et montrons que (X — a1)...(X — ay,) | P pour tout m € [[1, k] par récurrence.

— Le cas m = 1 a été vu dans le point précédent.
— Soit m € [1,k — 1]. Supposons que (X —aq)... (X —ap)|P,ona P = (X —aj)...(X — a;)Q pour un
certain @ € K[X]. On a

0= Plams1) = 4m (amt1 — @) Q(m+1),

1=

[

donc Q(am+1) =0 car a1 — «; = 0 pour tout . Ainsi, (X — ay,41) | @, ce qui conclut. O

Corollaire - Nombre maximal de racines

Si P € K,,[X] est non nul, alors il admet au plus n racines. Autrement dit, un polynoéme P € K, [X] qui admet
au moins n + 1 racines est nul.

Par conséquent, deux polynémes de K, [X] qui ont des évaluations qui coincident en n + 1 points sont égaux.

Démonstration. Si P € K,[X] admet k racines distinctes notées a1, ...ax € K, alors (X — a1)... (X — ag) | P, donc
deg(X —aq)...(X —ax) < degP, et k < deg P < n. Le nombre k de racines distinctes est au plus de n.

Par ailleurs, si P,Q € K, [X] et ]S(wl) = @(xl) pour zi,...,Z,+1 € K deux a deux distincts, le polynome P — @, de
degré au plus n, a alors n + 1 racines, ce qui entraine qu’il est nul. O

Remarques.

— En particulier, si P € K[X] admet une infinité de racines, alors P est nul.

~ On peut maintenant montrer l'injectivité du morphisme d’anncau ® : P — P de K[X] dans I’ensemble des
fonctions polynomiales sur K.

Démonstration. Si ®(P) = ®(Q), alors les fonctions Pet @ sont égales, donc coincident en tout point
de K, qui est infini. On en déduit que P = Q. O
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2. Multiplicité

Définition - Multiplicité
Soient P € K[X] et a € K, on appelle multiplicité de o pour le polynéme P

my(P) = max{keN, (X — oz)k | P}.
Autrement dit, « est de multiplicité m € N pour P si et seulement si
IQeK[X], P=(X—-a)"Q et Q(a)=0.

Une racine de P de multiplicité 1 est dite simple, et un racine de multiplicité au moins 2 est dite multiple. On
dira aussi qu’une racine de multiplicité 2 est double.

Remarques.
~ On note que le sous-ensemble {k € N, (X — a)¥ | P} de N admet bien un maximum : il est non vide car contient
0, et majoré par deg P : si (X — a)* | P, alors k = deg(X — a)* < deg P.
— Autre formulation : m,(P) = m si et seulement si (X —a)™ | P, et (X — o)™ | P.

— Si a €K, alors « est racine de P si et seulement si m,(P) > 1.

Théoréme - Caractérisation de la multiplicité
Soient P € K[X], e Ket meN. On a :

me(P)=m < Pa)=P'l(a) =...=P™ () =0 et P™(a)=0.
Démonstration. On note n = deg P. On a recours a la formule de Taylor polynomiale en o : P = kZO P(Z!(a) (X —a)k.
e () L PW(a)
m o PR (a = PP (a
P=(X-a) kZ T(Xfa)k +kzo o (X —a)®

forme la division euclidienne P = (X — a)™Q + R de P par (X — a)™. Par conséquent :

— 81 m(P) = m, alors le reste R est nul, donc R(X + «) = 0. On en déduit que tous ses coefficients sont nuls :

P(a) = P'(a) = ... = P Y(a) = 0. Par ailleurs, comme Q(a) = 0, on a P™(a) = 0,
~siP(a)=P'(a)=...= P N(a) = 0,et P(™)(a) = 0, alors R = 0 donc (X —a)™ | P, et, comme P (a) = 0,
Q(a) =0. O

Exemple. Déterminons la multiplicité de 1 pour le polynéme P = X3 — 3X + 2.
Ona: o P(1) =0, donc mi(P) =1,

o P'=3X?%-3, donc P'(1) =0, ce qui entraine que m;(P) > 2,
o P” =6X donc P"(1) = 0, ce qui entraine que m;(P) = 2.

" Théoréme - Propriétés de la multiplicité
Soient P, @ € K[X] non nuls et « € K. On a :
o Me(PQ) = mqo(P) +mqa(Q),

o si P+ @ est non nul, alors mq (P + Q) = min(mq(P), ma(Q)).
o si a est racine de P, alors my(P’) = mq(P) — 1.

Démonstration.
oOnaP=(X—-a)™PAet Q= (X—-a)" @B, ot A, BeK[X]et A(a) = 0, B(a) = 0. Par conséquent,
PQ = (X —a)m=P)tma(@ AR, Ceci conclut car AB(a) = 0.

o Avec les mémes notations, si mq(P) < ma(Q),ona P+ Q = (X —a)™P)(A + (X — a)m=(@-ma(P)B) donc
(P + Q) = ma(P).

Lycée Montesquieu 8



MPSI — Mathématiques 2025-26

o Sim = my(P) = 1, alors P s’écrit P = (X — a)™@Q avec Q € K[X] et @Q(a) = 0. On peut alors écrire
P =mX-a)"1Q+ (X —a)"Q' = (X —a)™'Q avec Q = mQ + (X — a)Q’. Comme Q(a) = mQ(a) =0,
on amg(P)=m-—1. O

Théoréme - Racines, multiplicité et factorisation

Soient P € K[X] et a,...,ar € K des racines de P de multiplicités respectives myq,...my. Alors
(X —a)™ .. (X —ag)™ | P,

Par conséquent, m; + ...+ my < deg P.

Remarque. Oun dit alors que le nombre de racines de P, comptées avec leur multiplicité (c’est-a-dire écrites plusieurs
fois si la racine est multiple), n’excéde pas deg P.

Démonstration. Nous raisonnons par récurrence pour montrer que pour tout i € [1, k], (X —aq)™ ... (X — ;)™ | P.

— Le cas k = 1 est clair : comme oy est de multiplicité 1 pour P, (X — a1)™ | P.

— Pour alléger les notations de la preuve, montrons seulement comment déduire que (X — )™ (X —a3)™2 | P de
(X — ap)™ | P. L’hérédité est en tout point analogue.
Soit @ € Q[X] tel que P = (X —a1)™ @, et notons m la multiplicité de as dans Q. On a alors @ = (X — ag)m@,
ot Q € K[X] est tel que Q(as) = 0. On a par ailleurs m < ms car (X — ag)™ | P.
Par hypothése, il existe R € K[X] tel que P = (X — as)™2R. Ainsi,

P=(X—)"(X-)"Q = (X —a)™R

Par intégrité de K[X], on peut simplifier par (X — az)™, ce qui donne (X —a1)™Q = (X —as)™~™R. Comme
(a2 — a1)™Q(az) = 0, on en déduit que as n’est pas racine de (X — )™~ ™R, donc ms = m. Ainsi, on a
P=(X—a)™ (X — a)™Q, ce qui conclut. O

3. Polynémes scindés

Définition - Polynéme scindé
On dit qu’un polynéme P € K[X] non nul est scindé s’il peut s’écrire comme un produit de polyndomes de degré
1. En d’autres termes, P est scindé s’il est de la forme

P=XX—-0a1)...(X —an).

Les nombres aq,...,a, € K sont les racines de P et A\ € K son coefficient dominant.

Remarque. Si deg P = n € N*, P est scindé si et seulement s’il admet exactement n racines comptées avec leur
multiplicité. Autrement dit, P admet des racines distinctes aq,...,a; de multiplicités respectives my,...,my, avec
mi + ...+ mg =n. On a alors X
P = caom[P] [ J(X = a)™.
i=1

K3

Remarque. A\ Un polyndéme P € R[X] peut étre scindé sur C, vu comme polynéme de C[X], mais pas sur R (vu
comme polyndéme de R[X]) : X2 + 1 est scindé sur C mais pas sur R. On précisera généralement sur quel corps le
polynéme est scindé.

n—1 2ikx

Exemple. Soit n € N. Le polynéme X" — 1l est scindé sur C: X" -1 = [] (X —w) = [] (X —en )
wel, k=0

Le théoréme suivant est un des résultats les plus importants du programme d’algebre, il dit que tout polynéme de C
de degré n admet exactement n racines comptées avec leur multiplicité. En d’autres termes, on peut toujours 1’écrire
comme facteur de polyndémes de degré 1.
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" Théoréme - Théoréme de d’Alembert-Gauss

Si P € C[X] est un polynéme non constant, alors il admet une racine. Par conséquent, P est scindé sur C.

Démonstration. Admis. O

/\ Le théoréme ne tient pas sur R : par exemple, le polynéme X2 + 1 n’a pas de racine dans R, et n’est donc pas
scindé sur R.

4. Relations coefficients-racines

Nous savons déja qu’il existe des relations entre les racines d’un polyndéme de Cao[X] et ses coefficients : rappelons ce
calcul, et tdchons de généraliser ces relations aux degrés supérieurs

Degré 2. Si P = a3 X? + a1 X + ag € C[X] a pour racines x1,z2, alors P s’écrit P = as(X — x1)(X — x2). En
développant, on obtient :

r1+x9 = —%
ag

a2

as (X2 — (1 +22)X + 3313:2) = 4 X? + a1 X + ag, donc {
1Ty =

par identification des coefficients.

Degré 3. Si P = a3X?® + a%( + a1 X + a9 € K[X] est scindé, et a pour racines xy,xo,x3, alors P s’écrit
P =a3(X —z1)(X — 22)(X — x3). En développant, on obtient :

_ a1
as
az
as
_ %
as

r1 +T9g+2x3 =

P = aj (X3 — (z1 + xQ)X2 + (z129 + T123 + T223) X — xlxgmg) , donc T1To + T1X3 + Toxz =

T1X9T3

On constate donc qu’on peut “lire” sur tout polynome scindé de degré 3 la somme et le produit des racines, mais aussi
la somme 125 + 2123 + o235 de tous les produits de 2 facteurs™ des racines, notée o ci-dessous, et qu’on remarque

qu’on peut récrire :
g9 = Z ZTilyj.

1<i<j<n

Le résultat suivant affirme qu’on peut plus généralement retrouver, a partir des coefficients de tout polyndéme scindé
de degré n, la somme des produits de k facteurs des racines, pour tout k € [[1,n].

" Théoréeme - Relations coefficients-racines de Viete

Soient P = ap, X" + ...+ a1X + ap € K[X] un polynéme scindé de degré n € N*, de racines 1, ..., z, comptées
avec leur multiplicité. Pour tout k € [1,n], on note

g = Z Tiq oo Ty,
0<iy<...<ip<n

la somme de tous les produits de k facteurs des x1,...,x,. On a alors

P=a, (X" - X" '+ 02X" > —03X" P+ ...+ (-1)"0,), soit Vke[l,n], op = (—1)kdn=k
27

Remarque. Sin=3: o1 =21+ %2+ T3, 02=2T1To+ T1X3+ ToX3, O3 = T1T2T3.

Sin=4: o1=x1+x2+ 23+ T4, 09 = T1T2 + T1T3 + T1T4 + ToX3 + Toxg + T3y,
03 = X1X2%3 + T1T2T4 + T123T4 + T2X32%4, 04 = X1T2T3%4.

Démonstration. Pour éviter un exces de détails techniques, donnons une idée de preuve, qui généralise le procédé
rencontré ci-dessus pour les degrés 2 et 3 : on cherche a développer et ordonner P, pour identifier les coefficients.

On sait que P s’écrit P = a,(X — 21)...(X — x,,). Chaque terme obtenu apres développement de P correspond a
un choix, dans chacun des facteurs, du terme X ou du terme —z;. Le coefficient ¢, [P] correspond a la somme des

1. ou, pour tout ¢, x; apparait au plus une fois dans chaque produit.
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termes ou X a été choisi k fois, et les —z; 'ont été (n — k) fois. Il s’agit donc de la somme des termes de la forme
an(—24,) ... (=24, ), ot les iq,..., i, sont distincts. Finalement, ¢z[P] = a = (—1)" %0, _ a,, d’ou le résultat.
En prenant k' = n — k, on obtient que o = (—1)’“/M. O

an

n n
Remarque. On retiendra en particulier qu'ona oy = Y, x; et 0,, = [ x4, donc on peut toujours “lire” sur un polyndme
scindé la produit et la somme des racines. i=1 i=1

P=a,X"+an 1 X" ' +.. .+ X+ ag

an O, T j (=D)"an ] =i j
i=1

i=1
Exemples.

1. Le polyndéme P = X3 — 2X? — X + 2 a pour racines évidentes 1 et —1. Comme on sait que le produit de ses
racines dans C est —2, on en déduit que la derniere racine est 2.

2. Le polyndéme Q = X3 — 6X2 + 11X — 6 a pour racine évidente x; = 1. On note 5,3 les deux autres racines
complexes de @ (éventuellement confondues). Comme z1 + z2 + 23 = 6 et z1z223 = 6, on a

To+x3 = O
Ioksy = 6

Ainsi, z9 et x5 sont les racines du polynéme X2 — 5X + 6, c’est-a-dire 2 et 3.

Exercice 3. On consideére le polynéme P = X3 — 11X + 12.

1. Montrer que P a trois racines réelles distinctes, qu’on notera a, b, c et qu’on ne cherchera pas a calculer.
2. Calculer arctana + arctan b + arctanc.
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