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Chapitre 14

Polynômes

Dans ce chapitre, K désigne le corps R ou le corps C.

I Anneau des polynômes
1. L’anneau KrXs

On appelle polynôme à coefficients dans K la donnée d’une suite pakqkPN d’éléments de K nulle à partir d’un
certain rang. On choisit de noter ce polynôme

P “

`8
ÿ

k“0

axX
k “ a0 ` a1X ` . . . ` anX

n,

où ak “ 0 pour tout k ě n. On appelle X l’indéterminée du polynôme, et, si k P N, on dit que ak est le k-ème
coefficient de P . On choisit de le noter ckrP s.
On note KrXs l’ensemble des polynômes à coefficients dans K.

Définition - Polynôme

Remarques.

– La somme de la définition n’est pas réellement infinie, les coefficients étant tous nuls à partir d’un certain rang.
– Deux polynômes sont égaux si et seulement si la suite de leurs coefficients, qui les définit, est la même. On

retiendra donc que deux polynômes sont égaux si et seulement si leurs coefficients sont égaux.
– La notion d’indéterminée recouvre le fait que nous allons chercher à “incarner” les polynômes dans n’importe

quel ensemble E pour lequel, si x P E, a0 ` a1x ` . . . ` anx
n a un sens, c’est-à-dire un ensemble muni de trois

lois : K ˆ E Ñ E
pλ, xq ÞÑ λx

,
E ˆ E Ñ E
px, yq ÞÑ x ` y

,
E ˆ E Ñ E
px, yq ÞÑ x ‹ y

La troisième justifie l’écriture xk, le première justifie l’écriture akx
k et la deuxième la somme de ces éléments.

Exemples.

– Le polynôme donné par la suite nulle est appelé le polynôme nul, on le note 0, ou 0KrXs.
– Un polynôme donné par la suite pakqkPN avec ak “ 0 pour tout k ą 0 est appelé polynôme constant.
– On appelle monôme un polynôme dont tous les coefficients sont nuls sans éventuellement l’un d’entre eux.

Opérations dans KrXs. Si P “
`8
ř

k“0

akX
k et Q “

`8
ř

k“0

bkX
k sont deux polynômes et λ P K, alors :

˛ Somme : P ` Q est défini comme le polynôme
`8
ř

k“0

pak ` bkqXk.

˛ Multiplication par un scalaire : λP est défini comme le polynôme
`8
ř

k“0

λakX
k.

˛ Produit : PQ est défini comme le polynôme
`8
ř

k“0

ˆ

k
ř

i“0

aibk´i

˙

Xk.

˛ Composition : P ˝ Q est défini comme le polynôme donné par
`8
ř

k“0

akQ
k.

˛ Conjugaison : si K “ C, on définit P “
`8
ř

k“0

ākX
k.
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Remarque. L’expression des coefficients du produit de deux polynômes est motivée par le calcul suivant pour x P K
ˆ

`8
ř

i“0

aix
i

˙ ˆ

`8
ř

i“0

bjx
j

˙

“
`8
ř

i“0

`8
ř

j“0

aibjx
i`j k“i`j

“
`8
ř

i“0

`8
ř

k“i

aibk´ix
k “

`8
ř

k“0

ˆ

k
ř

i“0

aibk´i

˙

xk,

où on a interverti les sommes dans la sommes double triangulaire. On rappelle que, contrairement aux apparences, les
sommes sont finies.

L’ensemble KrXs muni des lois de composition internes ` et ˆ décrites ci-dessus est un anneau commutatif ayant
pour éléments neutres respectifs le polynôme nul 0KrXs et le polynôme 1KrXs constant égal à 1.

Théorème - Anneau KrXs

Démonstration.

˛ pKrXs,`q est un groupe abélien dont l’élément neutre est 0KrXs : tout polynôme P P KrXs a pour inverse le
polynôme ´P .

˛ ˆ est associative, commutative et distributive par rapport à ` : si P “
`8
ř

k“0

akX
k, Q “

`8
ř

k“0

bkX
k, R “

`8
ř

k“0

ckX
k

ckrpPQqRs “

k
ÿ

i“0

˜

i
ÿ

j“0

ajbi´j

¸

ck´i “

k
ÿ

i“0

i
ÿ

j“0

ajbi´jck´i “

k
ÿ

j“0

k
ÿ

i“j

ajbi´jck´i
i‘“i´j

“

k
ÿ

j“0

k´j
ÿ

i1“0

ajbi1ck´pi1`jq

pour tout k P N. Ainsi, ckrpPQqRs “
k
ř

j“0

aj
k´j
ř

i1“0

bi1cpk´jq´i1 “
k
ř

j“0

ajck´jrQRs “ ckrP pQRqs. Par ailleurs :

ckrPQs “

k
ÿ

i“0

aibk´i
i1“k´i

“

k
ÿ

i1“0

bi1ak´i1 “ ckrQP s.

Pour finir, on a : ckrP pQ ` Rqs “
k
ř

i“0

aipbk´i ` ck´i “
k
ř

i“0

aibk´i `
k
ř

i“0

aick´iq “ ckrPQ ` PRs.

Remarque. Comme KrXs est un anneau commutatif, les formules du binôme et de Bernoulli s’appliquent : pour tous
P,Q P KrXs et n P N,

pP ` Qqn “

n
ÿ

k“0

ˆ

n

k

˙

P kQn´k, Pn ´ Qn “ pP ´ Qq

n´1
ÿ

k“0

P kQn´1´k.

2. Polynômes et degré

Soit P “
`8
ř

k“0

akX
k.

– Si P est non nul, on appelle degré de P l’entier degP “ maxtk P N, ak ­“ 0u. Par convention, le polynôme
nul a pour degré ´8.

– Si degP “ n P N, on dit que an est son coefficient dominant, et on le notera ici cdomrP s. Si cdomrP s “ 1,
on dit que P est unitaire.

Pour tout n P N, on note KnrXs l’ensemble des polynômes de KrXs de degré au plus n.

Définition - Degré, coefficient dominant

Remarque. K0rXs est l’ensemble des polynômes constants, et peut être identifié à K.

Soient P,Q P KrXs et λ P K‹. On a :

(i) degpP ` Qq ď maxpdegP, degQq, avec égalité : – si degP ­“ degQ,
– si degP “ degQ et cdomrP s ` cdomrQs ­“ 0,(ii) degpλP q “ degP si λ ‰ 0,

Théorème - Degré et opérations
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(iii) degpPQq “ degP ` degQ, et si k P N, alors degP k “ k degP .

(iv) degpP ˝ Qq “ degP ˆ degQ si Q n’est pas constant.

Remarque. Les opérations ont lieu dans R : on a ´8 ` x “ ´8 si x P N Y t´8u.

Démonstration. On note dP “ degP et dQ “ degQ.

(i) Si k ą maxpdP , dQq, alors ckrP ` Qs “ ckrP s ` ckrQs “ 0, donc degpP ` Qq ď maxpdP , dQq.

(ii) Le résultat est clair : si λ ­“ 0, cdP
rP s “ λcdP

rP s ­“ 0.

(iii) Si dP , dQ P N et k ě dQ, on a ckrPQs “
k
ř

i“0

aibk´i “
dP
ř

i“k´dQ

aibk´i car si i ą dP , ai “ 0 et si i ă k´dQ, bk´i “ 0.
Ainsi,

– si k ą dP ` dQ, alors k ´ dQ ą dP et la somme est nulle car elle est vide,
– si k “ dP ` dQ, alors ckrPQs “ adP

bk´dP
“ adP

bdQ
­“ 0. On en déduit degPQ “ dP ` dQ.

Si dP “ ´8 ou dQ “ ´8, alors PQ “ 0, et degP ` degQ “ ´8 “ degPQ, donc l’égalité est vraie.

(iv) Les points (i) et (iii) s’appliquent encore à un nombre fini de polynômes (par récurrence immédiate). Ainsi, on
a degpQkq “ k degQ. Si degQ ­“ 0, alors P ˝ Q est une somme de polynômes de degrés deux à deux distincts
dont le terme de plus haut degré est adP

QdP , qui est de degré dP dQ.

Si Q est constant, on peut avoir degpQ˝P q ­“ degP degQ : si P “ X2´1 et Q “ 1, alors degQ˝P “ deg 0 “ ´8,
mais degP degQ “ 0.

Les seuls polynômes inversibles de KrXs sont les polynômes constants non nuls.

Théorème - Inversibles de KrXs

Démonstration. Si P “ λ P K‹, alors PQ “ 1 avec Q “ 1
λ , donc P est inversible. Réciproquement, si P est inversible,

alors il existe Q P KrXs tel que PQ “ 1, ce qui entraîne que degP ` degQ “ 0, donc degP “ degQ “ 0.

Si P,Q P KrXs, alors : PQ “ 0 ô pP “ 0 ou Q “ 0q.

Théorème - Intégrité de Krxs

Démonstration. Si P “ 0 ou Q “ 0, on a bien sûr PQ “ 0. Examinons maintenant la réciproque : si PQ “ 0, alors
on a degpPQq “ ´8, ce qui se récrit degP ` degQ “ ´8. Ceci n’est possible que si degP “ ´8 ou degQ “ ´8,
c’est-à-dire si P “ 0 ou Q “ 0.

Remarque. Pour rappel, l’intégrité de KrXs assure qu’on peut simplifier par tout polynôme non nul : si A,B,C P KrXs

avec A non nul, alors AB “ AC ñ B “ C. En effet, si AB “ AC, alors ApB ´ Cq “ 0KrXs, donc B ´ C “ 0KrXs par
intégrité.

3. Fonctions polynomiales, évaluation

On appelle fonction polynomiale sur K toute fonction f : K Ñ K de la forme

f : x ÞÑ a0 ` a1x ` . . . ` anx
n,

où a0, . . . , an P K. L’ensemble PK des fonctions polynomiales sur K est un sous-anneau de F pK,Kq.

Définition-théorème - Fonction polynomiale

Démonstration. On a bien sûr PK Ă F pK,Kq. Par ailleurs, la fonction constante égale à 1 est polynomiale, et Pk

est stable par différence et par produit.

Si P “
`8
ř

k“0

akX
k P KrXs, on appelle fonction polynomiale associée à P la fonction polynomiale

Définition-théorème - Fonction polynomiale associée
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rP : x ÞÑ

`8
ÿ

k“0

akx
k.

Si x P K, on appelle évaluation de P en x le nombre rP pxq P K.

L’application Φ : P ÞÑ rP est un isomorphisme d’anneaux de KrXs dans l’anneau PK des fonctions polynomiales
sur K.

Théorème - Polynômes et fonctions polynomiales

Démonstration. Il est clair que Φ est un morphisme d’anneaux (les opérations sur les polynômes ou sur les fonctions
polynomiales ayant le même effet sur les coefficients), et que Φ est surjectif. Nous prouverons l’injectivité plus tard
dans ce chapitre.

Remarques.

– On aura tendance à encore noter P la fonction polynomiale associée à P . Attention toutefois : ce ne sont pas les
mêmes objets mathématiques.

– Le résultat n’est plus vrai si on remplace K par un corps fini, on peut d’ailleurs montrer que l’application Φ est
injective si et seulement si K est infini.

– Si x P K, l’application P ÞÑ rP pxq, dite application d’évaluation est un morphisme d’anneaux de KrXs dans K.

II Divisibilité dans KrXs

Soient A,B P KrXs. On dit que B divise A et on note B |A s’il existe un polynôme Q P KrXs tel que A “ BQ.
On dit alors que A est un multiple de B et B est un diviseur de A.
On note BKrXs “ tQB, Q P KrXsu les multiples de B.

Définition - Multiples, diviseurs

Remarque. Si A est non nul et B |A, alors degB ď degA.

Exemple. Si n P N, alors X ´ 1 |Xn ´ 1 : on sait que Xn ´ 1 “ pX ´ 1q
n´1
ř

k“0

Xk.

Soient A,B P KrXs avec B ­“ 0. Il existe un unique couple pQ,Rq P KrXs2 tel que A “ BQ`R et degR ă degB.
Les polynômes Q et R sont appelés respectivement quotient et reste dans la division euclidienne de A par B.

Théorème - Division euclidienne dans KrXs

Démonstration.

– Existence. Cas degA ă degB : dans ce cas, Q “ 0 et R “ A conviennent : A “ BQ ` R et degR ă degB.
Cas degA ě degB : Nous allons raisonner par récurrence forte.

Supposons que pour tout k ă n, on a existence du quotient et du reste dans la division de A par B lorsque
degA “ k. On suppose degA “ n, et on note a “ cdomrAs et b “ cdomrBs, puis

pA “ A ´
a

b
Xn´degBB.

On a deg pA ă n car cnr pAs “ cnrAs ´ a
b cdomrBs “ 0. Par hypothèse, il existe alors Q,R P KrXs tels que

pA “ BQ`R et degR ă degB. Ainsi, pA “ BpQ` a
bX

n´degBq `R, et on a montré qu’on a encore existence
de la division euclidienne lorsque degA “ n.
On note n “ degA. On déduit de ce qui précède que le résultat est vrai lorsque n “ degB, puis, par
récurrence forte, pour tout n ě degB.
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– Unicité. Supposons qu’il existe Q1, Q2, R1, R2 P KrXs tels que A “ BQ1 ` R1 “ BQ2 ` R2 et degR1 ă degB,
degR2 ă degB. Ainsi,

BpQ1 ´ Q2q “ R2 ´ R1, donc degpR2 ´ R1q “ degB ` degpQ1 ´ Q2q.

Si Q1 ­“ Q2, alors degpQ1 ´Q2q ě 0, et degpR2 ´R1q ě degB. Or degpR2 ´R1q ď maxpdegR1, degR2q ă degB
et il y a contradiction. On en déduit Q1 “ Q2, puis R1 “ R2.

Remarque. Soient P P KrXs et α P K. Le reste de la division euclidienne de P par X ´ α est rP pαq.

En effet, la division euclidienne de P par X ´ α s’écrit P “ pX ´ αqQ ` R, où degR ă 1, donc R est
constant. En évaluant en α, on obtient rRpαq “ rP pαq, ce qui conclut car R est constant.

Exercice 1. Effectuer la division euclidienne de X3 ´ 3X2 par X2 ´ X ` 2.

Exercice 2. Factoriser X3 ´ 6X2 ` 11X ´ 6.

Si A,B P KrXs et B est non nul, alors B |A si et seulement si le reste dans la division euclidienne de A par B
est nul.

Théorème - Caractérisation de la divisibilité dans KrXs

Démonstration. Si le reste dans la division euclidienne est nul, il existe Q P KrXs tel que A “ BQ, donc B |A. Si
B |A, l’écriture A “ BQ avec Q P KrXs est la division euclidienne, donc le reste est nul.

Si A,B P KrXs deux polynômes non nuls. On a

A |B et B |A ô Dλ P K‹, B “ λA.

On dit alors que les polynômes A,B sont associés.

Théorème et définition - Polynômes associés

Démonstration. Il est clair que si B “ λA avec λ P K‹, alors les polynômes sont associés. Réciproquement, si A et B
sont associés, il existe P,Q P KrXs tels que A “ BQ et B “ AP . On a alors A “ APQ, ce qui donne ApPQ ´ 1q “ 0.
Par intégrité, on obtient PQ “ 1, donc P est inversible dans KrXs, et il existe λ P K‹ tel que P “ λ, ceci conclut.

III Polynômes dérivés

Pour tout polynême P “
`8
ř

k“0

akX
k P KrXs, on appelle polynôme dérivé de P le polynôme :

P 1 “

`8
ÿ

k“1

kakX
k´1 “

`8
ÿ

k“0

pk ` 1qak`1X
k.

On définit par ailleurs les polynômes dérivés successifs de P en posant : ˛ P p0q “ P ,
˛ @n P N, P pn`1q “ pP pnqq

1.

Définition - Polynômes dérivés

Remarques. – Si P est un polynôme constant, alors P pnq “ 0 pour tout k P N‹.
– Si P P KrXs, alors ĂP 1 “ rP 1.
– Le terme kakX

k´1 étant nul pour k “ 0, on note parfois P 1 “
`8
ř

k“0

kakX
k´1.

Exemple. Si n P N et P “ Xn, alors P pkq “

#

n!
pn´kq!X

n´k si k ď n,

0 si k ą n.
. En particulier, P pnq “ n!.
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Remarque. Si degP “ d ě 0, une récurrence aisée sur n donne que pour tout n P J0, dK,
P pnq “

d
ÿ

k“n

kpk ´ 1q . . . pk ´ n ` 1qXk´n “

d
ÿ

k“n

k!

pk ´ nq!
Xk´n. (1)

On en déduit le résultat suivant sur le degré de P pnq.

Soient P P KrXs et n P N.

– Si n ď degP , alors degP pnq “ degP ´ n.
– Si n ą degP , alors P pnq “ 0.

Théorème - Polynômes dérivés et degré

Démonstration. Si degP ď 0, le résultat est clair. Sinon, (1) donne le résultat pour n ď degP . Ainsi, P pdq est
constant, donc ses dérivées successives sont nulles, et P pnq “ 0 pour tout n ą d.

Si P,Q P KrXs et λ, µ P K, alors

pλP ` µQq1 “ λP 1 ` µQ1, pPQq1 “ P 1Q ` PQ1, pP ˝ Qq1 “ P 1 ˝ Q ˆ Q1.

Théorème - Polynômes dérivés et opérations

Démonstration. Le premier point est clair. Pour le second, dans le cas K “ R, on peut utiliser l’isomorphisme Φ entre
RrXs et l’anneau des fonctions polynomiales sur R. Si P,Q P RrXs, alors

Φ
`

pPQq1
˘

“ ČpPQq1 “ ĄPQ
1

“
`

rP rQ
˘1

“ rP
1
rQ ` rP rQ

1
“ Φ

`

P 1Q ` PQ1
˘

.

On en déduit bien que pPQq1 “ P 1Q ` PQ1. Le cas K “ C s’en déduit en considérant les parties réelles et imaginaires
des polynômes P,Q P CrXs.
Le dernier point s’obtient en montrant par une récurrence immédiate que pour tout k P N‹, pQkq1 “ kQ1Qk´1 en
utilisant la formule précédente. On a alors, en notant ak les coefficients de P :

pP ˝ Qq1 “
`8
ř

k“0

akpQkq1 “
`8
ř

k“1

kakQ
1Qk´1 “

`8
ř

k“1

kakQ
k´1 ˆ Q1 “ P 1 ˝ Q ˆ Q1.

Remarque. Nous avons utilisé l’isomorphisme d’anneaux entre RrXs et PR, ce qui ne tient que parce que R est infini.
Le résultat ci-dessus reste cependant valable pour n’importe quel corps K, même fini : on peut alors montrer l’égalité
en revenant à l’expression des coefficients du polynôme PQ.

La formule suivante exprime que si degP “ n et si l’on connaît les évaluations en a P K des n polynômes dérivés
successifs de P en a, alors on connaît tout le polynôme P .

Si P P KnrXs et a P K, alors
P “

n
ÿ

k“0

P pkqpaq

k!
pX ´ aqk.

Théorème - Formule de Taylor polynomiale

Démonstration.

– Soit P “
`8
ř

i“0

aiX
i P KrXs. Pour tout k P N, P pkq “

`8
ř

i“k

i!
pi´kq!X

i´k, donc P pkqp0q “ k!ak, et ak “
P pkqp0q

k! . Ainsi,

P “
n
ř

k“0

P pkqp0q

k! Xk, ce qui conclut dans le cas a “ 0.

– On pose ensuite Q “ P pX `aq, ce qui entraine que pour tout k P N, QpkqpXq “ P pkqpX `aq. On remarque aussi
que P “ QpX ´ aq. Il suffit alors d’appliquer le résultat à Q :
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Q “
n
ř

k“0

Qpkqp0q

k! Xk “
n
ř

k“0

P pkqpaq

k! Xk, donc P “ QpX ´ aq “
n
ř

k“0

P pkqpaq

k! pX ´ aqk.

Remarque. On note que, dès à présent, on ne note plus rP la fonction polynomiale associée à P , mais P .

IV Racines et multiplicité
1. Définitons

Soit P P KrXs. On dit que α P K est une racine de P si P pαq “ 0.
Définition - Racine

Remarque. Tout polynôme de RrXs de degré impair admet au moins une racine réelle.

Démonstration. Si P “ anX
n ` . . . ` a1X ` a0 P CrXs avec n “ degP impair et an ą 0 (l’autre cas est

identique), alors on a P pxq ÝÑ
xÑ´8

´8 et P pxq ÝÑ
xÑ`8

`8.
Ainsi, le théorème des valeurs intermédiaires permet de conclure qu’il existe x P R tel que P pxq “ 0.

Soit P P KrXs.

i. Si α P K, alors α est une racine de P si et seulement si X ´ α |P .
ii. Plus généralement, si α1, . . . , αk sont des racines distinctes de P , alors pX ´ α1q . . . pX ´ αkq |P .

Théorème - Racines et factorisation

Démonstration.

i. Nous avons vu que le reste dans la division euclidienne de P par X ´ α est donné par P pαq. Par conséquent, le
reste est nul si et seulement si α est racine de P .

ii. Montrons seulement le sens direct, la réciproque étant claire. Supposons que α1, . . . , αk sont des racines distinctes
de P , et montrons que pX ´ α1q . . . pX ´ αmq |P pour tout m P J1, kK par récurrence.

– Le cas m “ 1 a été vu dans le point précédent.
– Soit m P J1, k ´ 1K. Supposons que pX ´ α1q . . . pX ´ αmq |P , on a P “ pX ´ α1q . . . pX ´ αmqQ pour un

certain Q P KrXs. On a
0 “ P pαm`1q “

m
ś

i“1

pαm`1 ´ αiqQpαm`1q,

donc Qpαm`1q “ 0 car αm`1 ´ αi ­“ 0 pour tout i. Ainsi, pX ´ αm`1q |Q, ce qui conclut.

Si P P KnrXs est non nul, alors il admet au plus n racines. Autrement dit, un polynôme P P KnrXs qui admet
au moins n ` 1 racines est nul.
Par conséquent, deux polynômes de KnrXs qui ont des évaluations qui coïncident en n ` 1 points sont égaux.

Corollaire - Nombre maximal de racines

Démonstration. Si P P KnrXs admet k racines distinctes notées α1, . . . αk P K, alors pX ´ α1q . . . pX ´ αkq |P , donc
degpX ´ α1q . . . pX ´ αkq ď degP , et k ď degP ď n. Le nombre k de racines distinctes est au plus de n.
Par ailleurs, si P,Q P KnrXs et rP pxiq “ rQpxiq pour x1, . . . , xn`1 P K deux à deux distincts, le polynôme P ´ Q, de
degré au plus n, a alors n ` 1 racines, ce qui entraîne qu’il est nul.

Remarques.

– En particulier, si P P KrXs admet une infinité de racines, alors P est nul.
– On peut maintenant montrer l’injectivité du morphisme d’anneau Φ : P ÞÑ rP de KrXs dans l’ensemble des

fonctions polynomiales sur K.

Démonstration. Si ΦpP q “ ΦpQq, alors les fonctions rP et rQ sont égales, donc coïncident en tout point
de K, qui est infini. On en déduit que P “ Q.
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2. Multiplicité

Soient P P KrXs et α P K, on appelle multiplicité de α pour le polynôme P

mαpP q “ maxtk P N, pX ´ αqk |P u.

Autrement dit, α est de multiplicité m P N pour P si et seulement si

DQ P KrXs, P “ pX ´ αqmQ et Qpαq ­“ 0.

Une racine de P de multiplicité 1 est dite simple, et un racine de multiplicité au moins 2 est dite multiple. On
dira aussi qu’une racine de multiplicité 2 est double.

Définition - Multiplicité

Remarques.

– On note que le sous-ensemble tk P N, pX ´ αqk |P u de N admet bien un maximum : il est non vide car contient
0, et majoré par degP : si pX ´ αqk |P , alors k “ degpX ´ αqk ď degP .

– Autre formulation : mαpP q “ m si et seulement si pX ´ αqm |P , et pX ´ αqm`1 {|P .
– Si α P K, alors α est racine de P si et seulement si mαpP q ě 1.

Soient P P KrXs, α P K et m P N. On a :

mαpP q “ m ô P pαq “ P 1pαq “ . . . “ P pm´1qpαq “ 0 et P pmqpαq ­“ 0.

Théorème - Caractérisation de la multiplicité

Démonstration. On note n “ degP . On a recours à la formule de Taylor polynomiale en α : P “
n
ř

k“0

P pkqpαq

k! pX ´αqk.

Si m ď n,
P “ pX ´ αqm

n
ÿ

k“m

P pkqpαq

k!
pX ´ αqk´m `

m´1
ÿ

k“0

P pkqpαq

k!
pX ´ αqk

forme la division euclidienne P “ pX ´ αqmQ ` R de P par pX ´ αqm. Par conséquent :

– si mαpP q “ m, alors le reste R est nul, donc RpX ` αq “ 0. On en déduit que tous ses coefficients sont nuls :
P pαq “ P 1pαq “ . . . “ P pm´1qpαq “ 0. Par ailleurs, comme Qpαq ­“ 0, on a P pmqpαq ­“ 0,

– si P pαq “ P 1pαq “ . . . “ P pm´1qpαq “ 0, et P pmqpαq ­“ 0, alors R “ 0 donc pX´αqm |P , et, comme P pmqpαq ­“ 0,
Qpαq ­“ 0.

Exemple. Déterminons la multiplicité de 1 pour le polynôme P “ X3 ´ 3X ` 2.

On a : ˛ P p1q “ 0, donc m1pP q ě 1,
˛ P 1 “ 3X2 ´ 3, donc P 1p1q “ 0, ce qui entraîne que m1pP q ě 2,
˛ P 2 “ 6X donc P 2p1q ­“ 0, ce qui entraîne que m1pP q “ 2.

Soient P,Q P KrXs non nuls et α P K. On a :

˛ mαpPQq “ mαpP q ` mαpQq,
˛ si P ` Q est non nul, alors mαpP ` Qq ě minpmαpP q,mαpQqq.
˛ si α est racine de P , alors mαpP 1q “ mαpP q ´ 1.

Théorème - Propriétés de la multiplicité

Démonstration.

˛ On a P “ pX ´ αqmαpP qA et Q “ pX ´ αqmαpQqB, où A,B P KrXs et Apαq ­“ 0, Bpαq ­“ 0. Par conséquent,
PQ “ pX ´ αqmαpP q`mαpQqAB. Ceci conclut car ABpαq ­“ 0.

˛ Avec les mêmes notations, si mαpP q ď mαpQq, on a P ` Q “ pX ´ αqmαpP qpA ` pX ´ αqmαpQq´mαpP qBq, donc
mαpP ` Qq ě mαpP q.
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˛ Si m “ mαpP q ě 1, alors P s’écrit P “ pX ´ αqmQ avec Q P KrXs et Qpαq ­“ 0. On peut alors écrire
P 1 “ mpX ´ αqm´1Q ` pX ´ αqmQ1 “ pX ´ αqm´1

pQ avec pQ “ mQ ` pX ´ αqQ1. Comme pQpαq “ mQpαq ­“ 0,
on a mαpP 1q “ m ´ 1.

Soient P P KrXs et α1, . . . , αk P K des racines de P de multiplicités respectives m1, . . .mk. Alors

pX ´ α1qm1 . . . pX ´ αkqmk |P,

Par conséquent, m1 ` . . . ` mk ď degP .

Théorème - Racines, multiplicité et factorisation

Remarque. On dit alors que le nombre de racines de P , comptées avec leur multiplicité (c’est-à-dire écrites plusieurs
fois si la racine est multiple), n’excède pas degP .

Démonstration. Nous raisonnons par récurrence pour montrer que pour tout i P J1, kK, pX ´α1qm1 . . . pX ´αiq
mi |P .

– Le cas k “ 1 est clair : comme α1 est de multiplicité 1 pour P , pX ´ α1qm1 |P .
– Pour alléger les notations de la preuve, montrons seulement comment déduire que pX ´α1qm1pX ´α2qm2 |P de

pX ´ α1qm1 |P . L’hérédité est en tout point analogue.
Soit Q P QrXs tel que P “ pX ´α1qm1Q, et notons m la multiplicité de α2 dans Q. On a alors Q “ pX ´α2qm pQ,
où pQ P KrXs est tel que pQpα2q ­“ 0. On a par ailleurs m ď m2 car pX ´ α2qm |P .
Par hypothèse, il existe R P KrXs tel que P “ pX ´ α2qm2R. Ainsi,

P “ pX ´ α1qm1pX ´ α2qm pQ “ pX ´ α2qm2R

Par intégrité de KrXs, on peut simplifier par pX ´α2qm, ce qui donne pX ´α1qm1 pQ “ pX ´α2qm2´mR. Comme
pα2 ´ α1qm1 pQpα2q ­“ 0, on en déduit que α2 n’est pas racine de pX ´ α2qm2´mR, donc m2 “ m. Ainsi, on a
P “ pX ´ α1qm1pX ´ α2qm2 pQ, ce qui conclut.

3. Polynômes scindés

On dit qu’un polynôme P P KrXs non nul est scindé s’il peut s’écrire comme un produit de polynômes de degré
1. En d’autres termes, P est scindé s’il est de la forme

P “ λpX ´ α1q . . . pX ´ αnq.

Les nombres α1, . . . , αk P K sont les racines de P et λ P K son coefficient dominant.

Définition - Polynôme scindé

Remarque. Si degP “ n P N‹, P est scindé si et seulement s’il admet exactement n racines comptées avec leur
multiplicité. Autrement dit, P admet des racines distinctes α1, . . . , αk de multiplicités respectives m1, . . . ,mk, avec
m1 ` . . . ` mk “ n. On a alors

P “ cdomrP s

k
ź

i“1

pX ´ αiq
mi .

Remarque. Un polynôme P P RrXs peut être scindé sur C, vu comme polynôme de CrXs, mais pas sur R (vu
comme polynôme de RrXs) : X2 ` 1 est scindé sur C mais pas sur R. On précisera généralement sur quel corps le
polynôme est scindé.

Exemple. Soit n P N. Le polynôme Xn ´ 1 est scindé sur C : Xn ´ 1 “
ś

ωPUn

pX ´ ωq “
n´1
ś

k“0

´

X ´ e
2ikπ
n

¯

.

Le théorème suivant est un des résultats les plus importants du programme d’algèbre, il dit que tout polynôme de C
de degré n admet exactement n racines comptées avec leur multiplicité. En d’autres termes, on peut toujours l’écrire
comme facteur de polynômes de degré 1.
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Si P P CrXs est un polynôme non constant, alors il admet une racine. Par conséquent, P est scindé sur C.

Théorème - Théorème de d’Alembert-Gauss

Démonstration. Admis.

Le théorème ne tient pas sur R : par exemple, le polynôme X2 ` 1 n’a pas de racine dans R, et n’est donc pas
scindé sur R.

4. Relations coefficients-racines

Nous savons déjà qu’il existe des relations entre les racines d’un polynôme de C2rXs et ses coefficients : rappelons ce
calcul, et tâchons de généraliser ces relations aux degrés supérieurs

Degré 2. Si P “ a2X
2 ` a1X ` a0 P CrXs a pour racines x1, x2, alors P s’écrit P “ a2pX ´ x1qpX ´ x2q. En

développant, on obtient :

a2
`

X2 ´ px1 ` x2qX ` x1x2

˘

“ a2X
2 ` a1X ` a0, donc

#

x1 ` x2 “ ´a1

a2

x1x2 “ a0

a2

par identification des coefficients.

Degré 3. Si P “ a3X
3 ` a2X ` a1X ` a0 P KrXs est scindé, et a pour racines x1, x2, x3, alors P s’écrit

P “ a3pX ´ x1qpX ´ x2qpX ´ x3q. En développant, on obtient :

P “ a3
`

X3 ´ px1 ` x2qX2 ` px1x2 ` x1x3 ` x2x3qX ´ x1x2x3

˘

, donc

$

’

&

’

%

x1 ` x2 ` x3 “ ´a1

a3

x1x2 ` x1x3 ` x2x3 “ a2

a3

x1x2x3 “ ´a0

a3

On constate donc qu’on peut “lire” sur tout polynôme scindé de degré 3 la somme et le produit des racines, mais aussi
la somme x1x2 ` x1x3 ` x2x3 de tous les produits de 2 facteurs 1 des racines, notée σ2 ci-dessous, et qu’on remarque
qu’on peut récrire :

σ2 “
ÿ

1ďiăjďn

xixj .

Le résultat suivant affirme qu’on peut plus généralement retrouver, à partir des coefficients de tout polynôme scindé
de degré n, la somme des produits de k facteurs des racines, pour tout k P J1, nK.

Soient P “ anX
n ` . . . ` a1X ` a0 P KrXs un polynôme scindé de degré n P N‹, de racines x1, . . . , xn comptées

avec leur multiplicité. Pour tout k P J1, nK, on note

σk “
ÿ

0ďi1ă...ăikďn

xi1 . . . xik

la somme de tous les produits de k facteurs des x1, . . . , xn. On a alors

P “ an
`

Xn ´ σ1X
n´1 ` σ2X

n´2 ´ σ3X
n´3 ` . . . ` p´1qnσn

˘

, soit @k P J1, nK, σk “ p´1qk
an´k

an
.

Théorème - Relations coefficients-racines de Viète

Remarque. Si n “ 3 : σ1 “ x1 ` x2 ` x3, σ2 “ x1x2 ` x1x3 ` x2x3, σ3 “ x1x2x3.
Si n “ 4 : σ1 “ x1 ` x2 ` x3 ` x4, σ2 “ x1x2 ` x1x3 ` x1x4 ` x2x3 ` x2x4 ` x3x4,

σ3 “ x1x2x3 ` x1x2x4 ` x1x3x4 ` x2x3x4, σ4 “ x1x2x3x4.

Démonstration. Pour éviter un excès de détails techniques, donnons une idée de preuve, qui généralise le procédé
rencontré ci-dessus pour les degrés 2 et 3 : on cherche à développer et ordonner P , pour identifier les coefficients.
On sait que P s’écrit P “ anpX ´ x1q . . . pX ´ xnq. Chaque terme obtenu après développement de P correspond à
un choix, dans chacun des facteurs, du terme X ou du terme ´xi. Le coefficient ckrP s correspond à la somme des

1. où, pour tout i, xi apparaît au plus une fois dans chaque produit.
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termes où X a été choisi k fois, et les ´xi l’ont été pn ´ kq fois. Il s’agit donc de la somme des termes de la forme
anp´xi1q . . . p´xin´k

q, où les i1, . . . , in´k sont distincts. Finalement, ckrP s “ ak “ p´1qn´kσn´k an, d’où le résultat.
En prenant k1 “ n ´ k, on obtient que σk1 “ p´1qk

1 an´k1

an
.

Remarque. On retiendra en particulier qu’on a σ1 “
n
ř

i“1

xi et σn “
n

ś

i“1

xi, donc on peut toujours “lire” sur un polynôme
scindé la produit et la somme des racines.

´an

n
ř

i“1
xi p´1qnan

n
ś

i“1
xi

P “ anX
n ` an´1X

n´1 ` . . . ` a1X ` a0

Exemples.

1. Le polynôme P “ X3 ´ 2X2 ´ X ` 2 a pour racines évidentes 1 et ´1. Comme on sait que le produit de ses
racines dans C est ´2, on en déduit que la dernière racine est 2.

2. Le polynôme Q “ X3 ´ 6X2 ` 11X ´ 6 a pour racine évidente x1 “ 1. On note x2, x3 les deux autres racines
complexes de Q (éventuellement confondues). Comme x1 ` x2 ` x3 “ 6 et x1x2x3 “ 6, on a

"

x2 ` x3 “ 5
x2x3 “ 6

Ainsi, x2 et x3 sont les racines du polynôme X2 ´ 5X ` 6, c’est-à-dire 2 et 3.

Exercice 3. On considère le polynôme P “ X3 ´ 11X ` 12.

1. Montrer que P a trois racines réelles distinctes, qu’on notera a, b, c et qu’on ne cherchera pas à calculer.
2. Calculer arctan a ` arctan b ` arctan c.
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