MPSI — Mathématiques 2025-26

Chapitre 15

Dérivabilité

Dans ce chapitre, I désigne un intervalle de R non réduit & un point, ou plus généralement une union d’intervalles non
réduits & un point™, et a désigne un point de I.

| Deérivée

Définition - Taux d’accroissement

On appelle taux d’accroissement de f en a la fonction 7, : I\{a} — R définie M(z
par :
x)— fla
iz 8 fla) M(a)
T—a

Graphiquement, 7,(z) est le coefficient directeur de la droite passant par les
points M (a) et M(x) de coordonnées respectives (a, f(a)) et (z, f(x)). a x

Définition - Dérivabilité en un point, sur un ensemble
On dit que f est dérivable en a si son taux d’accroissement en a 7, admet une limite finie lorsque z — a. Dans
ce cas, on note cette limite f’(a), et on appelle nombre dérivé de f en a.

Si f est dérivable en tout point de I, on dit que f est dérivable sur I, et on appelle dérivée de f sur I la fonction
f:aw— f'(x) définie sur I. On note 2(I,R) I'ensemble des fonctions dérivables sur I.

Remarque. Du fait que a + h —>a, on obtient par composition de limite que f est dérivable en a si :

i H@ 0~ 1 (@)

existe et est finie.
h—0 h

A La notation f(z)" est proscrite : f(z) est un nombre réel, et non pas une fonction. Lorsqu’on voudra faire apparaitre

la variable de dérivation, on pourra en revanche écrire L (f(z)) au lieu de f".

Définition-théoréme - Dérivabilité et dérivabilité a gauche, a droite

On dit que f est dérivable d gauche (resp. @ droite) en a si la fonction 7, admet une limite & gauche (resp. a
droite) en a. Dans ce cas, on note fg(a) (resp. fi(a)) cette limite.

La fonction f est dérivable en a si et seulement si f est dérivable a gauche et a droite en a, et fé(a) = fi(a).

Démonstration. 11 s’agit d’une simple application des résultats sur les limites. O

Exemple. Si f:x — |z|,ona f,(0) = —1 et f3(0) =1, donc f n’est pas dérivable
en 0.

Remarque. Graphiquement, lorsque les dérivées a gauche et a droite existent,
fe(a) et fi(a) désignent les pentes respectives des tangentes a gauche et a droite a
la courbe de f.

Lorsque fg(a) = fi(a), ces pentes ne sont pas les mémes, on parle de rupture de
pente en a.

A 1 s’agit bien de la limite de 7, dans la définition, et non pas de f’. Comme nous allons le revoir, il peut arriver
que f soit dérivable en a, mais que sa dérivée n’admette pas de limite en a.

1. On peut en fait définir plus généralement les notions dans une partie I de R telle que tout point a € I est d’accumulation : il existe

une suite (zn)nen de E\{a} telle que z, — a
n—+00
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Théoréme - Dérivabilité et développement limité

La fonction f est dérivable en a si et seulement si elle admet un développement limité d’ordre 1 en a, i.e. il existe
¢ € R et une fonction e définie sur I telle que e(z) — 0 et pour tout = € I,
r—a

f(@) = fla) + 4z —a) +e(z)(z - a). (1)

x)
Dans ce cas, £ = f'(a). Le développement limité se récrit f(z) = f(a) + f'(a)(x — a) + &(z)(z — a).

Démonstration. Si f est dérivable en a, on considere la fonction

f(x)—f(a) .
6:x>—>{x—af/(a) S%x—a
0 sinon

On a donc e(x) — 0 par dérivabilité en a, et pour tout x € I, f(z) = f(a) + f'(a)(x — a) + e(z)(z — a).

Tr—a

Par ailleurs, si f vérifie (0I), alors pour tout = a, on a W ={+e(x) — ¢, et [ est dérivable en a. O

Remarque. 1l arrive fréquemment qu’on écrive le développement limité en changeant de variable, en posant © = a+ h.

On obtient :
fla+h) = f(a)+ f'(@h+e(h)h, on e(h) — 0.

Définition - Tangente a € en a
Soit f une fonction dérivable en a. La droite d’équation y = f’(a)(z — a) + f(a) est appelée tangente d la courbe
de f en a.

Remarques.

— Graphiquement, la tangente a la courbe de f en un point a est la droite de pente f’(a) passant par M(a).
— Si f admet une limite infinie en a, on dit que sa courbe admet une tangente verticale en a, d’équation x = a.

" Théoréme - Dérivabilité et continuité

Si f est dérivable en a € I, alors f est continue en a.

Démonstration. Si f est dérivable en a, alors on sait que f admet un développement limité d’ordre 1 en a : f(z) =
fla) + f'(a)(x — a) + e(x)(z — a). Comme e(x) —> 0, on a f(z) — f(a), et f est continue en a. O

/A La réciproque est fausse. Par exemple, la fonction z — 1/ est continue en 0, mais n’est pas dérivable en ce point.

Théoréme - Opérations sur les fonctions dérivables

(i) Si f,ge P(1,R) et A € R, alors les fonctions \f, f + g, fg et, si g ne s’annule pas sur I, g, sont dérivables
sur I, et on a alors

A =M (f+9)' = f+d,  (f9) = Ffg+fd, <£) = fgg;gfg-

Ainsi;, 2(1,R) est stable par combinaison linéaire, par produit, et quotient lorsque le dénominateur ne
s’annule pas.
(i) Si fe 2(I,R), ge 2(J,R) et f(I) < J, alors go f est dérivable sur I, et

(gof) = (g0 f) x f".

(#7) Si I est un intervalle et f € Z(I,R) est une bijection de I sur J et f’ ne s’annule pas sur I, alors f~! est
dérivable sur l'intervalle J, et 1

-1\ _
(f ) - f/of—l'
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Démonstration.
(i) Les deux premiers points proviennent directement des liens déja vus entre limite et opérations. Examinons le

troisiéme point : soit a € I, on a alors

(f9)(x) = (fg)(a) _ f(x)g(x) = fla)g(x) + fla)g(x) — fla)g(a)  _ f(a) g9(x) — g(a) + g(@) f(z) = f(a)

r—a r—a

r—a r—a

— ['(a)g'(a) + f(a)g'(a),

r—a

car f et g sont dérivables en a, et g(x) — g(a) par continuité de g en a. Ensuite, si g ne s’annule pas, alors
r—a

1 1
i@ @ _  9@—g@) _ g@)—gl L = g
T—a 9(z)g(a)(z — a) r—a g(x)gla) e—a g(a)?
/ ’
On en déduit que % est dérivable sur I, et (%) = —;’—2.

! ’ ! ’
On déduit alors de ce qui précede que % est dérivable, et (g) = f’% +f (—5—2) = fo-tg gg_zfg .
(#1) On peut écrire le développement limité g(y) = g(f(a)) + ¢'(f(a))(y — f(a)) + e(y)(y — f(a)), ou &(y) —f(> : 0,
y—f(a

par dérivabilité de g en f(a). Ainsi, pour « = a, en choisissant y = f(x) et en divisant par x — a,

9 @) =00 @) _ iy O =I@) e F@ = F@)

xr—a xr—a xr—a r—a

car par composition de limite, e(f(z)) — 0 du fait que f(z) — f(a).

(iii) Soient be J et a € I tel que f(a) = b, c’est-a-dire f~1(b) = a. Comme f'(a) =0, on a +-2=% ~ —> .
f@)—fla) 4 q f'(a)

Par continuité de f~!, on a f~!(y) — f~1(b) = a donc par composition de limites,

y—b
FM ) — () L ey
b T ooy e U0 = gy -

Il Dérivées d’ordres supérieurs
1. Définition

Rappel On définit les dérivées successives d’une fonction f sur I, lorsqu’elles existent par récurrence : on note f(© = f,
et pour n € N*, si la fonction f("~1) existe et est dérivable sur I, on dit que f est n fois dérivable sur I, et on note

£ = (f-DY,
On note 2™ (I, R) ensemble des fonctions n fois dérivables de I dans R.
Exemples.

1. Soit n € N. La fonction exponentielle est n fois dérivable sur R et exp(™) = exp.
2. Soit p e N. Si n € N, la fonction g : z — zP est n fois dérivable sur R, et

n —1)...(p—n+1)zP™™ =
g( ) o p(p ) (p ) (p—n)!
0 sin>p.

3. Pour tout n € N| la fonction inverse h : z — % est n fois dérivable sur R*, et

n!
xn+1 .

VezeR*, h™(z) = (—1)"

(n—1)!

4, . . s . —1 *
4. On déduit du point précédent que si n € N, alors In™ () = (-1)" pour tout z € R .

Définition - Classe ¢, classe €*
x On dit que f est de classe €™ sur I si f est n fois dérivable sur I et si f(") est continue sur I. L’ensemble
des fonctions de classe €™ sur I est noté €™ (I,R), ou encore €™ (I).
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* On dit que f est de classe €< sur I si f est n fois dérivable sur I pour tout n € N. L’ensemble des fonctions
| de classe € sur I est noté €*(I,R), ou encore €*(I).

Exemple. Les fonctions polynomiales, les fonctions exp, cos, sin, arctan sont de classe €% sur R.
[\ Les espaces 2! (I,R) et €1 (I,R) ne sont pas les mémes : il existent des fonctions dérivables dont la dérivée n’est
pas continue. Par exemple, si on consideére la fonction f définie sur R par
2 i 1

r'sin-  six =0,
i :
" 0 siz=0

On constate que f est dérivable sur R : elle 'est sur R* et on a f'(z) = 2z sin% — cos% pour tout x € R*, et en 0
car
xz)— f(0
J@ -0 _ a1

T Tr x—0

En revanche, f’ n’a pas de limite en 0, donc elle n’est pas continue en 0.

2. Opérations sur €"(I,R) et ¢ (I,R)

" Théoréme - Combinaison linéaire
Soit n € N. Si f,ge €"(I) (resp. €*(I,R)) et A, u € R, alors

A +pg e €M(IR) (resp. €°(1)) et (Af +pg)™ = Af0 + pg™.

Ainsi, €™ (I,R) et €*(I,R) sont stables par combinaison linéaire.

Démonstration. Par récurrence aisée : exercice. O

Le théoréme suivant donne la dérivée n®™e d’un produit, et généralise le résultat bien connu de la dérivée d’un produit.

" Théoréme - Produit : formule de Leibniz

L’espace €™ (I,R) est stable par produit : si f,g € €"(I), alors fg est de classe €™ sur I. De plus,

(o)™ Z": < >f(k ) _ an (Z)f(n_k)g(k)'

k=0 k=0

De méme, €*(I) est stable par produit.

Démonstration. La preuve se fait par récurrence et est treés semblable & la preuve du binéme de Newton.Le cas ou
n = 0 est évident. Par ailleurs, si on fixe n € N et on suppose que le résultat est vrai au rang n et si f,g € €7 (I, R),
alors

i < ) (f(k+1)g(n—k) +f(k)g(n—k+1))
"

Z n f(k)g(7L—(k—1))+Z ) ) g(n—kt1)
ik iso \F

Par réindexation dans la premiere somme. En remarquant que les termes correspondant & £ = 0 dans la premiere
somme, et k = n + 1 dans la seconde sont nuls, on a

n+1 n+1 n+1
(n+1) _ n (k) ,(n+1—k) N r(k) (n+1-k) _ n n (k) ,(n+1—k)
(f9) > (k_l)f 9 +k§0 (k)f g > ((k_1> - (k»f g :

k=0 k=0

(g = 3 ( )(f<k>g<n—k>>’

k=0

3 =
- O

On conclut grace a la formule de Pascal que le résultat est vrai au rang n + 1, ce qui acheve la récurrence. O

Théoréme - Composition, inverse

Si fe®"(I,R) et ge €"(J,R)avec f(I) < J, alors go f € €"(I,R). De méme, si f et g sont de classe €%,
alors go f € €.
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Si f € €™(I,R) ne s’annule pas sur I, alors % € €"(I,R). De méme pour le cas €~.

Démonstration. Par récurrence : le cas n = 0 est déja montré. Par ailleurs, si on fixe n € N et on suppose que le
résultat est vrai au rang n, alors pour f,g € "', go f est dérivable comme composée de fonctions dérivables, et
(gof) = f'x g of. Lafonction f" est de classe €" et, par hypotheése de récurrence, ¢’ o f est de classe €™, donc
par produit (g o f)’ est de classe ™. On en conclut que go f est de classe €™ 1.

Pour le deuxiéme point, il suffit de considérer la composition avec la fonction inverse. O

Remarque. Par conséquent, €"(I,R) et €*(I,R) sont stables par quotient lorsque le dénominateur ne s’annule pas.

Théoreme - Réciproque

Soit n e N*. Si f € €"(I,R) (resp. €°(I,R)) et f est bijective de I sur J et f’ ne s’annule pas sur I, alors f~*
est de classe € (resp. €%°) sur J.

Démonstration. Par récurrence : exercice. O

I1l  Accroissements finis

Dans cette partie, on suppose que I est un intervalle, et a € I.

1. Extrema locaux et globaux

Définition - Extremum local

On dit que f admet un maximum (resp. minimum) local en a si f < f(a) (resp. f = f(a) sur un voisinage de a
dans I.
On dit que f admet un extremum local en a si f admet un maximum ou un minimum local en a.

Remarque. On appelle souvent minimiseur (local) de f un point en lequel f admet un minimum (local). Attention a
ne pas confondre minimum m de f et minimiseur. On introduit de méme la notion de maximiseur de f.

Rappel : f < f(a) sur un voisinage de a dans I signifie qu’il existe n > 0 tel que pour tout = €]a — n,a + n[nI, on a

f(@) < f(a).

 Théoréme - Condition nécessaire d’optimalité d’ordre 1

Si f est dérivable en un point a intérieur a I, c’est-a-dire que a n’est pas une extrémité de I, et f admet un
extremum local en a, alors ,
f'(a) =0.

Remarque. On appelle point critique de f tout point a € I tel que f’(a) = 0. La condition nécessaire d’optimalité
entraine alors que si f est dérivable sur I, ses minimiseurs et maximiseurs locaux éventuels sont parmi les points
critiques de f sur I.

Démonstration. Supposons que f admet en ¢ un minimum local. Il existe alors > 0 tel que, pour tout x €la—n, a+n|,
f(z) = f(a) (il est possible de choisir i suffisamment petit pour que Ja —n,a + n[c I, car a n’est pas extrémité de I).

Pour tout = €]a — n,a[, on a f(z) — f(a) = 0 et  — a < 0. Par conséquent,

7]”(3:) — fla) <0, ainsi fé(a) = lim 7}”(33) — fla) <0.
r—a r—a~ r—a
De méme, on a fj(a) = 0. Comme f'(a) = fy(a) = f3(a), on a f'(a) = 0. O
Remarques.
— Ce théoréme donne une condition nécessaire, mais pas U
suffisante. Par exemple, f : z — 3 a une dérivée nulle
en 0, mais n’admet pas d’extremum en 0. ﬂ
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— En revanche, lorsque [ est dérivable sur I, si a est un point critique de f et que f’ change de signe en a alors f
atteint un extremum local en a.

— Le résultat n’est valable que si a n’est pas une extrémité de l'intervalle. Par exemple la fonction g :  — x admet
un maximum local en 1 sur [0,1] et un minimum local en 0 sur [0, 1], mais aucun de ces points n’est un point
critique.

2. Théoréme de Rolle

Théoreme - Théoréme de Rolle

Soit f une fonction continue sur un intervalle [a, b] et dérivable sur ]a, b[ avec a < b. Si f(a) = f(b) alors il existe
au moins un réel ¢ de Ja, b[ tel que f/(c) = 0.

Remarques.

— Le théoréme est vrai dans le cadre général ou f est dérivable sur
]a, b[ et continue sur [a, b]. Il peut bien stir étre utilisé dans le cas fla) = £
particulier ou la fonction f est dérivable sur [a,b] : dans ce cas,
la fonction est aussi continue sur [a, b].

— Interprétation graphique : si f(a) = f(b), la courbe représentative
de f posséde (au moins) une tangente horizontale, et f admet (au
moins) un extremum local sur Ja, b[. a B b

Démonstration. La fonction f est continue sur le segment [a,b], donc elle y admet un minimum et un maximum,
d’apreés le théoréme des bornes atteintes. Ainsi, il existe a, 8 € [a, b] tels que pour tout x € [a, b],

fla) < f(x) < f(B)

— Si a et 5 sont tous deux extrémités de [a, b] alors la condition f(a) = f(b) entraine que f est constante sur [a, b]
(car son minimum est égal & son maximum). Par suite, n’importe quel élément de Ja, b| annule la dérivée de f.

— Sinon, I'un au moins des réels «, 8 n’est pas extrémité de I'intervalle [a, b] et puisque f admet un extremum local
en ce point et y est dérivable, la dérivée de f s’y annule. O

Exemple. Si P € R[X] admet deux racines réelles distinctes alors P’ admet au moins une racine réelle.

Si a,b sont deux racines réelles distinctes de P, alors P(a) = P(b) = 0. Comme P est dérivable sur [a, b],
le théoréme de Rolle entraine I'existence de c €]a, b[ tel que P'(c) = 0.

3. Théoréme des accroissement finis

Théoreme - Théoréme des accroissements finis

Si f est continue sur un intervalle [a, b] et dérivable sur ]a, b[ avec a < b, alors il existe au moins un réel ¢ €]a, b|

tel que
f) = f(a) = (b—a) f'(c).

Remarque. Interprétation graphique : I’égalité

10y F) = fla)

f (C) - b —a
signifie que la courbe représentative de f possede (au
moins) une tangente parallele & sa corde passant par I ~_" b
(a, f(a)) et (b, f(b))-
Démonstration. On introduit la fonction g : [a,b] — R définie par

f(b) — f(a
9w f@) - fla) - LI D g

La fonction g est continue sur [a, b] et dérivable sur |a,b[, car f l'est. On remarque par ailleurs que g(a) = g(b) = 0.
Ainsi, par le théoréme de Rolle, on sait qu’il existe ¢ €]a, b[ tel que ¢'(c) = 0.
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Pour tout x €]a, b[, on a ¢'(z) = f'(z) — = 0, ce qui conclut. O

Théoreme - Inégalité des accroissements finis

Si f est continue sur [a,b], dérivable sur |a,b[, et s’il existe deux réels m et M tels que m < f/'(z) < M pour
tout x €]a, b[, alors

mb—a) < f()— fla) < M (b—a).
En particulier, si |f’| est majorée par un réel k sur l'intervalle I, alors pour tous z,y € I,

1f(y) = f(@)] < kly—=|.

Remarque. S’il existe k € R tel que f(y) — f(x)| < |y — x| pour tous x,y € I, on dit que f est lipschitzienne sur I. On
dit méme qu’elle est k-lipschitzienne lorsqu’on veut préciser la constante k.

Démonstration. Par le théoréme des accroissements finis, il existe un réel ¢ €]a, b[ tel que

f) = fla) = (b—a)f'(c).
Comme m < f'(¢) < M, ceci donne m (b—a) < f(b) — f(a) < M (b—a).
Si |f’| est majorée par k € R et x,y € I avec = < y, alors on peut appliquer le point précédent car —k < f’ < k sur
[z,y]. On a ainsi —k (y — ) < f(y) — f(z) < k(y — x). O
Exemples.

1. Les fonctions cos et sin sont 1-lipschitziennes.

On a |cos| = | —sin| < 1 sur R, donc |cosy — cosz| < |y — x| pour tous z,y € R d’apres I'inégalité
des accroissements finis. En d’autres termes, cos est 1-lipschitzienne. De méme pour sin.
1 1
2. Pour tout n € N*, < In(n+1)—In(n) < —.

n+1 n

La fonction f: 2+ Inz est dérivable sur [n,n + 1]. Comme f'(z) = L pour tout z € [n,n+ 1], on a :

1 y 1
< < —, d
n+1 Fw) n R |

V€ [n,n+ 1],

)

S|

<ln(n+1)—In(n) <

par l'inégalité des accroissements finis.
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