MPSI — Lycée Montesquieu 2025-2026

DM 6

Exercice 1.  Soit m € R. Résoudre le systeme suivant en discutant suivant la valeur de m.

T —my +m2z = m
mx —m?y +mz =1
mx +y —m?z =1
On note () le systéme. Les systémes suivants sont équivalents a (%) :
x —my +m?z = m
(m-—m*z = 1—m?
1 +m*)y —(m*+m’)z = 1-m?
x —my +m?z = m
A+m?)y -m?*(1+m)z = 1-m?
m(l—m?)z = 1-—m?

— Sim¢ {—1,0,1}, le systéme admet une unique solution.

m 1+m 1
1-m2" 1-m2" m) "’
— Sim =0, il n’y a pas de solution.

— Sim = —1, le systéme équivaut a
r+y+z=-1
—r+y—z=1

Les solutions sont {(—z — 1,0, 2), z € R}.

Exercice 2.  Sous-groupes de R. On souhaite montrer que si G est un sous-groupe de (R, +), alors :

— soit G est de la forme aZ avec a € RT,
— soit G est dense dans R.

Dans toute la suite, on fixe un sous-groupe G de R différent de {0}.

1. Soit a € R. Montrer que aZ = {ka, k € Z} est un sous-groupe de R.
2. Justifier que I'ensemble G' n R admet une borne inférieure a € R,..
3. Dans cette question, on suppose a > 0.
a. Dans cette question, nous allons montrer que a € G. On raisonne par I’absurde, et on suppose que a ¢ G.
1. Justifier qu'il existe b,c € G "R} tels que a < b < ¢ < 2a.
1. Justifier que 0 < ¢ — b < a, et conclure & une contradiction.
b. Montrer que aZ < G.
¢. Nous cherchons a montrer I'autre inclusion : G < aZ. On considére x € G, et on pose n = [%J
i. Montrer que 0 < x — na < a.
7. En déduire que x = na et conclure.
4. Dans cette question, on suppose a = 0.

a. Fixons z,y € R tels que z < y.
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1. Justifier qu’il existe ge G "R} tel que 0 < g <y —z.
i1. Posons n = BJ + 1. Montrer que ng €|z, y|.
b. Déduire de ce qui précede que si a = 0 alors G est dense dans R.
On a donc montré : —si a > 0, alors G = aZ,
—si a =0, alors G est dense dans R.

5. Application. On note G =Z + v/2Z = {a + bv/2 | a,b € Z}.
a. Montrer que G est un sous-groupe de (R, +).

b. En utilisant le résultat prouvé ci-dessus, montrer que G est dense dans R.

1. aZ est non vide car contient 0 = Oa.

Soient @,y € aZ. 1l existe k, k' € Z tels que « = ka et y = k'a. Alors, z —y = (k — k') a € aZ car k — k' € Z. Ainsi,
aZ. est stable par différence.

2. Par hypotheése, il existe € G non nul. Ainsi, —z € G. Comme z > 0 ou —z > 0 on en déduit que G N R’ est non
vide.

Par ailleurs, G n R} est minoré par 0. On en déduit donc que G N R% admet une borne inférieure.

3. a. i. Comme 2a > a ce n’est pas un minorant de G "R’ donc il existe c € G n R tel que ¢ < 2a. D’autre part
a est un minorant de G "R’ donc a < cet a¢ GN R} donca < c.

De méme, comme ¢ > a ce n’est pas un minorant de G n R’ donc il existe be G n R} tel que a < b < c.
7. On en déduit 0 < ¢ — b < 2a — b, puis comme a < b, on a —b < —a, et ¢c— b < 2a — a = a.

On a ¢ — b € G car G stable par différence et ¢ — b € R} donc ¢ —b e G nR}. Comme ¢ — b < a, ceci
contredit le fait que a = inf G A R%.. On en déduit que a € G.

b. C’est du cours : comme G est un groupe et a € G, on a na € G pour tout n € Z, ce qui donne aZ c G.
c. 1. Par définition de la partie entiere, n < £ <n+1doutan <z <na+apuis 0 <z —na<a.
i. Ona x € G et na € G donc z —na € G. Par 'absurde, si © — na > 0 alors £ — na € G " R’} or a minorant
de G n R’ d’ou une contradiction. Ainsi,  — na = 0.
On a ainsi montré que G < aZ, ce qui donne G = aZ.
4. a. 4. Comme précédemment, comme y — z > 0 ce n’est pas un minorant de G n R’} donc il existe g € G n R}
telque 0 < g <y—wx.
#. Par définition de la partie entiére on a % <n< % +1ldouz<ng<zxz+g<uy.
b. Avec les notations de la question précédente, on a ng € Gn]z, y[. On vient de montrer que tout intervalle de la
forme ]z,y [ contient un élément de G c’est-a-dire que G est dense dans R.
5. a Ona0=0+0v2e G d’une part. D’autre part, si z,y € G, on peut noter & = a + bv/2 et y = ¢ + dv/2, donc
r—y=a—c+ (b—d)v2eG.
b. On raisonne par ’absurde et on suppose que G n’est pas dense dans R. D’apres ce qui précede, il existe alors
a € R* tel que G = daZ.

On montre sans difficulté que Z+ +/2Z est un sous-groupe de R. Par I’absurde, on suppose qu’il existe a € RT tel
que Z + /27 = aZ. Nécessairement, a # 0 car Z + /27 # {0}. Alors, 1 = 1 + 0/2 = qa avec g € Z(q # 0) et
V2 = 0+ 14/2 = pa avec p € Z. On obtient /2 = s—z = % € Q. Ceci est en contradiction avec le fait que +/2 est
irrationnel. Ainsi, Z + /27 n’est pas de la forme aZ donc est dense dans R.

Exercice 3. Une autre preuve de Bolzano-Weierstrass. Soit (u,)nen une suite réelle. On pose

A={neN, Vk>n, up < up}.
1. On suppose que A est infini. Montrer que (u,,)nen posséde une sous-suite décroissante.
2. On suppose que A est fini. Construire une sous-suite croissante de (uy, )nen.

3. En déduire que toute suite réelle bornée possede une sous-suite convergente.
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1. — On pose ¢(0) = min A. Ce minimum existe car A est infini donc non vide.
— Soit n € N. On suppose (n) construit. L’ensemble {m > ¢(n), Vk > m, ur < um} est non vide (sinon,
A c [0, ¢(n)], et n’est donc pas infini). On peut alors poser p(n + 1) = min{m > p(n), Yk > m, ur < Um}.
On a alors p(n + 1) > @(n), et Ug(nr1) < Up(n)-
On a donc construit une sous-suite décroissante de (un),,cy-
2. Comme A est une partie finie de N, on peut considérer son maximum N.
— On pose p(0) = N + 1.
— Soit n € N. On suppose ¢(n) construit avec ¢(n) > N. Comme ¢(n) ¢ A, il existe k > ¢(n) tel que ur = uy(rn).
On pose alors ¢(n + 1) = k, de sorte que @(n + 1) > @(n) et Uy(nt1) = Upn)-
On a alors construit une sous-suite (uy(n)),, > qui est croissante.

3. Dans les deux cas ci-dessus, (un),,.y Posséde une sous-suite monotone. Comme (uy),,.y €st bornée, la sous-suite Pest
aussi, et est donc convergente.

Exercice 4. On considere la fonction f : R — R définie par :

Iy :c»—>{ 0 siz¢gQoux=0,

% sinon,oﬁxz%avec(p,q)erN*etpqul.

Déterminer les points de continuité de f.

— Siz e Q*, alors f(x) =0, or par densité de R\Q dans R, on sait qu’il existe une suite (), oy telle que z, — x.

—+
Comme f(zn) = 0 pour tout n € N, on a f(x,) - 0 = f(z), donc f n’est pas continue en z. e
n—+00

— Siz e R\Q ou z = 0, on considére une suite (z,),  telle que z, 2 Supposons que f(zn) —~ 0.
n— 400

n— +00

neN

Ainsi, il existe € > 0 tel que VN € N, 3n > N, |f(z»)| > €. On peut donc construire par récurrence une sous-suite
(Zo(n))nen telle que |f(zy(n))| > € pour tout n € N. Ceci entraine que pour tout n € N, z,(,) € Q*. On peut donc
écrire Ty (n) = 2 Ol (Pn,qn) € Z X N* et pn A gn = 1, ce qui implique que f(zy(n)) = qin. Ainsi, |gn| < 1.
Nous avons ainsi, montré que (¢n), oy €st bornée, donc le théoreme de Bolzano-Weierstrass assure 1’existence d’une
sous-suite (qy(n)), oy qui converge. En tant que suite d’entiers, elle converge vers un entier ¢ € N* (et stationne).
Par conséquent,

oy = X gum — g

n - n M
q’d’(’ﬂ) n—+0o0

De méme, xq est limite d’une suite d’entiers, c’est donc un entier, noté p. On a alors x = %, ce qui est une contradiction
si z € Q*.
Si z = 0, alors (p¢(n))neN stationne en 0 car c’est une suite d’entiers qui a une limite nulle. Ainsi, a partir d’un
certain rang, f(zy(n)) = f(0) =0, et il y a contradiction.

Finalement, la fonction f est discontinue en tout point de Q*, et continue en tout autre point.
. J
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