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DS 2

Exercice 1 – Questions indépendantes

1. Soit n P N‹. Calculer
n

ÿ

k“0

ˆ

n

k

˙

3n´k.

2. Déterminer lim
xÑ0

tanx

x
.

3. Donner la valeur de arcsin
´

´
?
3
2

¯

et arctan
`

tan
`

3π
4

˘˘

.

4. On considère la fonction f : x ÞÑ arcsinp
?
xq ´ 1

2 arcsinp2x ´ 1q.
a. Déterminer l’ensemble de définition et de dérivabilité de f , et calculer f 1.
b. En déduire une expression plus simple de f .

5. Résoudre dans C l’équation z2 ´ 3z ` 3 ` i “ 0.

6. Déterminer tous les réels x tels que x ´ 1

x ` 1
ă

2x ` 1

2x
.

7. Résoudre l’équation d’inconnue x P R :

arcsinpxq ` arcsinp
?
15xq “

π

2
.

1. La formule du binôme donne
n
ř

k“0

`

n
k

˘

3n´k “ p1 ` 3qn “ 4n.

2. Si x P R‹, on a
tanx

x
“

sinx

x

1

cosx
, donc tanx

x
ÝÑ
xÑ0

1, car sinx

x
ÝÑ
xÑ0

1 et cosx ÝÑ
xÑ0

1.

Autre méthode : on reconnaît un taux d’accroissement de la fonction tan : on a
tanx

x
“

tanx ´ tan 0

x ´ 0
ÝÑ
xÑ0

tan1
p0q “

1

cos2p0q
“ 1.

3. On a arcsin
´

´
?
3
2

¯

“ ´π
3

. D’autre part, arctan
`

tan
`

3π
4

˘˘

“ arctan
`

tan
`

3π
4

´ π
˘˘

“ arctan
`

tan
`

´π
4

˘˘

“ ´π
4

.

4. a. Si x P R, le réel fpxq est bien défini si et seulement si
$

&

%

x ě 0
?
x P r´1, 1s,

2x ´ 1 P r´1, 1s

i.e.

$

&

%

x ě 0
0 ď x ď 1
0 ď 2x ď 2

i.e. x P r0, 1s.

Finalement, l’ensemble de définition de f est D “ r0, 1s.
– La fonction g : x ÞÑ

?
x est dérivable sur s0, 1r, et gps0, 1rq Ăs´1, 1r. Comme la fonction arcsin est dérivable

sur s ´ 1, 1r, on déduit par composition que la fonction x ÞÑ arcsinp
?
xq est dérivable sur s0, 1r.

– La fonction h : x ÞÑ 2x ´ 1 est dérivable sur s0, 1r et hps0, 1rq Ăs ´ 1, 1r, donc par composition à nouveau,
la fonction x ÞÑ arcsinp2x ´ 1q est dérivable sur s0, 1r.

Ainsi, f est dérivable sur s0, 1r. Par ailleurs, pour tout x Ps0, 1r,

f 1
pxq “

1

2
?
x

1
?
1 ´ x

´
1

2

2
a

1 ´ p2x ´ 1q2
“

1

2
?
x ´ x2

´
1

?
4x ´ 4x2

“
1

2
?
x ´ x2

´
1

2
?
x ´ x2

“ 0.

b. Ainsi, comme f est dérivable sur l’intervalle s0, 1r et de dérivée nulle, la fonction est constante sur s0, 1r, et
même sur r0, 1s par continuité de f sur r0, 1s. Ainsi, pour tout x P r0, 1s, on a

fpxq “ fp0q “ ´
1

2
arcsinp´1q “

1

2
arcsin 1 “

1

2

π

2
“

π

4
.

1/7



MPSI – Lycée Montesquieu 2025-2026

5. Le discriminant associé à l’équation polynomiale est ∆ “ ´3 ´ 4i, qui a pour racines carrées complexes 1 ´ 2i et
´1 ` 2i. On obtient alors les solutions 1 ` i et 2 ´ i.

6. L’équation est valide pour x P Rzt´1, 0u. Or pour tout x P Rzt´1, 0u, on a

x ´ 1

x ` 1
ă

2x ` 1

2x
ô

p2x ` 1qpx ` 1q ´ 2xpx ´ 1q

2xpx ` 1q
ą 0 ô

5x ` 1

2xpx ` 1q
ą 0.

Un tableau de signe donne alors que l’ensemble des solutions est s ´ 1,´ 1
5

rYs0,`8r.
7. On note d’abord que arcsinpxq ` arcsinp

?
15xq n’a un sens que si x P r´ 1?

15
, 1?

15
s.

Par ailleurs, si x P r´ 1?
15
, 0s, alors arcsinpxq ` arcsinp

?
15xq ď 0 donc x n’est pas solution. Or si x Ps0, 1?

15
s,

arcsinpxq ` arcsinp
?
15xq “

π

2
ô arcsinpxq “

π

2
´ arcsinp

?
15xq

ô sin parcsinpxqq “ sin
´π

2
´ arcsinp

?
15xq

¯

car arcsin x, arcsinp
?
15xq P

“

0, π
2

‰

, donc π
2

´ arcsinp
?
15xq P

“

0, π
2

‰

. On obtient alors

arcsinpxq ` arcsinp
?
15xq “

π

2
ô x “ cosparcsinp

?
15xqq ô x “

?
1 ´ 15x2

Comme x ě 0, on a finalement

arcsinpxq ` arcsinp
?
15xq “

π

2
ô x2

“ 1 ´ 15x2
ô 16x2

“ 1 ô x “
1

4
.

La seule solution est donc 1
4
.

N.B. : on pouvait aussi (en justifiant) composer l’équation de départ par cos.

Exercice 2 – La fonction argth
On rappelle que la fonction th est définie par

@x P R, thpxq “
shpxq

chpxq
“

ex ´ e´x

ex ` e´x
.

1. Faire l’étude de la fonction th : dérivabilité et dérivée, variations, limites.
2. Montrer que la fonction th définit une bijection de R sur un intervalle J à préciser. On note argth sa bijection

réciproque.
3. Monter que argth est dérivable sur J et calculer sa dérivée.

1. La fonction th est dérivable sur R comme quotient de fonctions dérivables sur R dont le dénominateur ne s’annule
pas. Par ailleurs, pour tout x P R,

th1
pxq “

sh1pxq chpxq ´ ch1pxq shpxq

ch2pxq
“

ch2pxq ´ sh2pxq

ch2pxq
“

1

ch2pxq
“ 1 ´ th2

pxq.

Ainsi, la fonction th est strictement croissante sur R. Par ailleurs,

thpxq “
ex ´ e´x

ex ` e´x
“

exp1 ´ e´2xq

exp1 ` e´2xq
“

1 ´ e´2x

1 ` e´2x
ÝÑ

xÑ`8
1, car e´2x

ÝÑ
xÑ`8

0.

Comme pour tout x P R, thp´xq “ e´x´ex

e´x`ex
“ ´ thpxq, la fonction th est impaire, donc thpxq ÝÑ

xÑ´8
´1.

2. La fonction th est strictement croissante, continue sur R, donc par le théorème de la bijection, elle réalise une
bijection de R sur son ensemble image thpRq “s ´ 1, 1r d’après la question précédente.

3. Comme la fonction th1 “ 1
ch2 ne s’annule pas que R, la fonction argth est dérivable sur thpRq “s ´ 1, 1r, et pour tout

x Ps ´ 1, 1r,
argth1

pxq “
1

th1pargthpxqq
“

1

1 ´ th2pargthpxqq
“

1

1 ´ x2
.
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Exercice 3 – Développement en série entière de arctan
Le but de cet exercice est de démontrer que pour tout x P r´1, 1s,

arctanx “ lim
nÑ`8

n
ÿ

k“0

p´1qk
x2k`1

2k ` 1
.

1. a. Soient q P R avec q ­“ ´1 et n P N. En reconnaissant la somme des termes d’une suite géométrique, simplifier
n

ÿ

k“0

p´1qkqk.

b. Pour tout entier naturel n, on considère la fonction Sn définie sur R` par :

@x P R`, Snpxq “

n
ÿ

k“0

p´1qk
x2k`1

2k ` 1
“ x ´

x3

3
`

x5

5
` . . . ` p´1qn

x2n`1

2n ` 1
.

Pour tout x P R`, calculer S1
npxq et en donner une expression simplifiée à l’aide de la question 1a.

2. Soit n P N. On définit la fonction Rn sur R` par

@x P R`, Rnpxq “ arctanpxq ´ Snpxq.

a. Calculer Rnp0q.
b. Établir les variations de la fonction Rn sur R`, et en déduire son signe. On pourra distinguer les cas n pair

et n impair.
c. Pour x P R`, comparer les nombres Snpxq, arctanpxq et Sn`1pxq selon la parité de n.
d. En déduire que pour tout x P R` et pour tout n P N, on a :

|arctanpxq ´ Snpxq| ď
x2n`3

2n ` 3
.

On pourra pour cela commencer par calculer Sn`1pxq ´ Snpxq.
3. Démontrer la formule annoncée.

1. a. On a
n
ř

k“0

p´1qkqk “
n
ř

k“0

p´qqk “
1´p´qqn`1

1`q
car q ­“ ´1.

b. La fonction Sn est polynomiale donc dérivable sur R`, et pour tout x P R`, on a

S1
npxq “

n
ÿ

k“0

p´1q
kx2k

“

n
ÿ

k“0

p´x2
q
k

“
1 ´ p´x2qn`1

1 ` x2
,

en appliquant le résultat de la question 1a avec q “ x2, qui vérifie bien q ­“ ´1.
2. a. On a Rnp0q “ 0.

b. La fonction Rn est dérivable sur R` comme somme de fonctions dérivables sur R`, et pour tout x P R`,

R1
npxq “

1

1 ` x2
´

1 ´ p´x2qn`1

1 ` x2
“

p´x2qn`1

1 ` x2
“

p´1qn`1x2pn`1q

1 ` x2
.

– Si n est pair, R1
n est négative sur R`, donc Rn décroît sur R`. Comme Rnp0q “ 0, la fonction Rn est

négative sur R`.
– Si n est impair, R1

n est positive sur R`, donc Rn croît sur R`. Comme Rnp0q “ 0, la fonction Rn est
positive sur R`.

c. Soient x P R`.
– Si n est pair, la question précédente donne arctan x ´ Snpxq ď 0 et arctan x ´ Sn`1pxq ě 0 car n ` 1 est

impair. Finalement, Snpxq ď arctan x ď Sn`1pxq.
– Si n est impair, la question précédente donne arctan x´Snpxq ě 0 et arctan x´Sn`1pxq ď 0 car n` 1 est

pair. Finalement, Sn`1pxq ď arctan x ď Snpxq.

3/7



MPSI – Lycée Montesquieu 2025-2026

d. Soit x P R`. On a

Sn`1pxq ´ Snpxq “

n`1
ÿ

k“0

p´1q
k x2k`1

2k ` 1
´

n
ÿ

k“0

p´1q
k x2k`1

2k ` 1
“ p´1q

n`1 x2n`3

2n ` 3
.

– Si n est pair, 0 ď arctan x ´ Snpxq ď Sn`1pxq ´ Snpxq, donc | arctan x ´ Snpxq| ď |Sn`1pxq ´ Snpxq|.
– Si n est impair, Sn`1pxq ´ Snpxq ď arctan x ´ Snpxq ď 0, donc | arctan x ´ Snpxq| ď |Sn`1pxq ´ Snpxq|.

Ainsi, dans tous les cas,

| arctan x ´ Snpxq| ď |Sn`1pxq ´ Snpxq| “
x2n`3

2n ` 3
,

car x P R`.
3. Si x P r0, 1s, on a, d’après la question précédente,

ˇ

ˇ

ˇ

ˇ

ˇ

arctan x ´

n
ÿ

k“0

p´1q
k x2k`1

2k ` 1

ˇ

ˇ

ˇ

ˇ

ˇ

ď
x2n`3

2n ` 3
ď

1

2n ` 3

car x ď 1. Comme 1
2n`3

ÝÑ
nÑ`8

0, on en déduit par comparaison que arctan x ´
n
ř

k“0

p´1qk x2k`1

2k`1
ÝÑ

nÑ`8
0, i.e.

arctan x “ lim
nÑ`8

n
ÿ

k“0

p´1q
k x2k`1

2k ` 1
.

Si x Ps ´ 1, 0r, on a ´x Ps0, 1r, donc d’après ce qui précède,

| arctanp´xq ´ Snp´xq| ÝÑ
nÑ`8

0

Or par imparité de arctan et de Sn, on a | arctanp´xq ´Snp´xq| “ | ´ arctan x`Snpxq| “ | arctan x´Snpxq|, donc
| arctan x ´ Snpxq| ÝÑ

nÑ`8
0.

Exercice 4 – Somme d’une série
Le but de cet exercice est de montrer :

n
ÿ

k“1

1

k2
ÝÑ

nÑ`8

π2

6
.

La fonction cotan

On considère la fonction cotan définie par

cotan : x ÞÑ
cospxq

sinpxq

1. Déterminer l’ensemble de définition D de cotan. Montrer que cotan est impaire et π-périodique.
2. Justifier que cotan est dérivable sur D , et calculer sa dérivée. Faire l’étude des variations de cotan (limites

comprises) sur s0, πr.
3. a. Montrer que pour tout x Ps0, π

2 r, sinpxq ď x ď tanpxq. On pourra par exemple étudier le signe de deux
fonctions bien choisies.

b. En déduire que pour tout x Ps0, π
2 r,

cotan2pxq ď
1

x2
ď 1 ` cotan2pxq.

Calcul d’une somme

Soit n P N. Pour tout z P C, on pose Pnpzq “ pz ` 1q2n`1 ´ pz ´ 1q2n`1.

4. Montrer que les solutions de l’équation Pnpzq “ 0 sont les complexes zk “ ´i cotan
`

kπ
2n`1

˘

avec k P J1, 2nK.
5. a. Vérifier que pour k P Jn ` 1, 2nK, on a 2n ` 1 ´ k P J1, nK et z2n`1´k “ ´zk.
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b. En déduire :
2n
ÿ

k“1

zk “ 0, et
2n
ÿ

k“1

z2k “ 2
n

ÿ

k“1

z2k.

6. En déduire que
n

ÿ

k“1

z2k “ ´
ÿ

1ďkăℓď2n

zk zℓ.

7. Montrer pour z P C, que :

Pnpzq “ 2
n

ÿ

k“0

ˆ

2n ` 1

2k

˙

z2k.

On note C2n´2 le coefficient devant z2n´2 et C2n le coefficient devant z2ndans l’expression de Pnpzq ci-dessus. On
admet 1 le résultat suivant :

ÿ

1ďkăℓď2n

zk zℓ “
C2n´2

C2n
.

8. Calculer C2n´2 et C2n, et montrer que
n

ÿ

k“1

cotan2
ˆ

kπ

2n ` 1

˙

“
np2n ´ 1q

3
.

Somme de la série

9. À l’aide des questions précédentes et de la question 3b, montrer que

lim
nÑ`8

n
ÿ

k“1

1

k2
“

π2

6
.

1. Si x P R, on a sinx “ 0 ô x ” 0 rπs, donc la fonction cotan est définie sur D “ Rztkπ, k P Zu. Elle est impaire sur
D : pour tout x P R, on a x P D ô ´x P D , et si x P D ,

cotanp´xq “
sinp´xq

cosp´xq
“

´ sinx

cosx
“ ´ cotan x.

Par ailleurs, cotan est π-périodique : pour tout x P R on a x P D ô x ` π P D , et si x P D ,

cotanpx ` πq “
sinpx ` πq

cospx ` πq
“

´ sinx

´ cosx
“ cotan x.

2. La fonction cotan est dérivable sur D comme quotient de fonctions dérivables sur D dont le dénominateur ne s’annule
pas. Si x P D , on a

cotan1
pxq “

cos1pxq sinpxq ´ sin1pxq cospxq

sin2pxq
“

´ sin2 x ´ cos2 x

sin2 x
“ ´

1

sin2pxq
“ ´

`

1 ` cotan2
pxq

˘

.

Ainsi, pour tout x Ps0, πr, on a cotan1pxq ă 0, et cotan est strictement décroissante sur s0, πr.
Comme sinx ÝÑ

xÑ0`
“ 0` et cos 0 “ 1, on a cotan x ÝÑ

xÑ0`
`8. On a par ailleurs cotan x ÝÑ

xÑπ´
´8.

3. a. – On étudie f : x ÞÑ sinx ´ x. La fonction f est dérivable sur R et pour tout x P R, f 1pxq “ cosx ´ 1 ď 0.
Ainsi, f est décroissante sur R. Par conséquent, pour tout x P R`, on a fpxq ď fp0q “ 0, d’où sinx ď x.

– On étudie g : x ÞÑ tanx´x. La fonction g est dérivable sur s0, π
2

r, et pour tout x Ps0, π
2

r, g1pxq “ tan2 x ě 0,
donc g est croissante sur s0, π

2
r. Par conséquent, pour tout x Ps0, π

2
r, gpxq ě gp0q “ 0, d’où tanx ě x.

b. Si x Ps0, π
2

r, en passant à l’inverse puis au carré (les trois nombres sont positifs) on obtient

1 ` cotan2
pxq “

1

sin2pxq
ě

1

x2
ě

1

tan2pxq
“ cotan2

pxq.

1. Ce résultat sera établi dans le cours sur les polynômes.
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4. On remarque que Pnp1q “ 22n`1 ‰ 0, donc 1 n’est par solution de Pnpzq “ 0. Si z P C, on a alors :

Pnpzq “ 0 ô

ˆ

z ` 1

z ´ 1

˙2n`1

“ 1 ô Dk P J0, 2nK, z ` 1

z ´ 1
“ e

2ikπ
2n`1

ô Dk P J1, 2nK, z “
e

2ikπ
2n`1 ` 1

e
2ikπ
2n`1 ´ 1

ppas de solution pour k “ 0q

ô Dk P J1, 2nK, z “
e

ikπ
2n`1 2 cos

´

kπ
2n`1

¯

eik
π

2n`1 2i sin
´

kπ
2n`1

¯

ô Dk P J1, 2nK, z “ ´i cotan

ˆ

kπ

2n ` 1

˙

.

5. a. Pour n ` 1 ď k ď 2n on a n “ 2n ` 1 ´ pn ` 1q ě 2n ` 1 ´ k ě 2n ` 1 ´ 2n “ 1. De plus,

z2n`1´k “ ´i cotan

ˆ

p2n ` 1 ´ kqπ

2n ` 1

˙

“ ´i cotan

ˆ

π `
´kπ

2n ` 1

˙

“ i cotan

ˆ

kπ

2n ` 1

˙

“ ´zk.

b. On a
2n
ÿ

k“1

zk “

n
ÿ

k“1

zk `

2n
ÿ

k“n`1

zk “

n
ÿ

k“1

zk ´

2n
ÿ

k“n`1

z2n`1´k “

n
ÿ

k“1

zk ´

n
ÿ

k1“1

zk1 “ 0,

avec le changement d’indice k1 “ 2n ` 1 ´ k. Par ailleurs,

2n
ÿ

k“1

z2k “

n
ÿ

k“1

z2k `

2n
ÿ

k“n`1

z2k “

n
ÿ

k“1

z2k `

2n
ÿ

k“n`1

p´z2n`1´kq
2

“

n
ÿ

k“1

z2k `

n
ÿ

k1“1

z2k1 “ 2
n

ÿ

k“1

z2k,

toujours avec le changement d’indice k1 “ 2n ` 1 ´ k.
6. On a

˜

2n
ÿ

k“1

zk

¸2

“

˜

2n
ÿ

k“1

z2k

¸

` 2
ÿ

1ďkăℓď2n

zk zℓ “ 2

˜

n
ÿ

k“1

z2k

¸

` 2
ÿ

1ďkăℓď2n

zk zℓ.

Comme
2n
ř

k“1

zk “ 0, on déduit de ce qui précède que 2
n
ř

k“1

z2k ` 2
ř

1ďkăℓď2n

zk zℓ “ 0, soit
n
ř

k“1

z2k “ ´
ř

1ďkăℓď2n

zk zℓ.

7. On a :

Pnpzq “

2n`1
ÿ

k“0

˜

2n ` 1

k

¸

zk ´

2n`1
ÿ

k“0

˜

2n ` 1

k

¸

zkp´1q
2n`1´k

“

2n`1
ÿ

k“0

˜

2n ` 1

k

¸

zk
´

1 ´ p´1q
2n`1´k

¯ ´

on a ´ p´1q
2n`1´k

“ ´p´1q
2n`1

p´1q
´k

“ `p´1q
k

¯

“

2n`1
ÿ

k“0

˜

2n ` 1

k

¸

zk
´

1 ` p´1q
k

¯

pon regroupe des indices pairs et les indices impairsq

“

n
ÿ

k“0

˜

2n ` 1

2k

¸

z2k
´

1 ` p´1q
2k

¯

looooooomooooooon

“2

`

n
ÿ

k“0

˜

2n ` 1

2k ` 1

¸

z2k`1
´

1 ` p´1q
2k`1

¯

looooooooomooooooooon

“0

“ 2
n

ÿ

k“0

˜

2n ` 1

2k

¸

z2k.

8. On a :

˛ C2n´2 “ 2

˜

2n ` 1

2n ´ 2

¸

“ 2

˜

2n ` 1

3

¸

“ 2
p2n ` 1q ˆ 2n ˆ p2n ´ 1q

3 ˆ 2 ˆ 1
“ 2

np2n ` 1qp2n ´ 1q

3
.

˛ C2n “ 2

˜

2n ` 1

2n

¸

“ 2

˜

2n ` 1

1

¸

“ 2p2n ` 1q.

Ainsi,
n

ÿ

k“1

cotan2

ˆ

kπ

2n ` 1

˙

“

n
ÿ

k“1

´z2k “
ÿ

1ďkăℓď2n

zk ˆ zℓ “
C2n´2

C2n
“

np2n ´ 1q

3
.
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9. Si k P J1, nK, on déduit de la question 3b en choisissant x “ kπ
2n`1

que

cotan2

ˆ

kπ

2n ` 1

˙

ď
1

k2π2

p2n`1q2

ď 1 ` cotan2

ˆ

kπ

2n ` 1

˙

.

Ainsi, en multipliant par π2

p2n`1q2
, on obtient

π2

p2n ` 1q2
cotan2

ˆ

kπ

2n ` 1

˙

ď
1

k2
ď

π2

p2n ` 1q2

ˆ

1 ` cotan2

ˆ

kπ

2n ` 1

˙˙

.

En sommant les inégalités pour k P J1, nK, on obtient :

π2

p2n ` 1q2
np2n ´ 1q

3
ď

n
ÿ

k“1

1

k2
ď

π2

p2n ` 1q2

ˆ

n `
np2n ´ 1q

3

˙

Or, on a
π2

p2n ` 1q2
np2n ´ 1q

3
“

2π2n2
`

1 ´ 1
2n

˘

12n2
`

1 ` 1
2n

˘2 “
π2

`

1 ´ 1
2n

˘

6
`

1 ` 1
2n

˘2 ÝÑ
nÑ`8

π2

6
.

π2

p2n ` 1q2

ˆ

n `
np2n ´ 1q

3

˙

“
π2

p2n ` 1q2
2n2 ` 2n

3
“

2π2
`

1 ` 1
n

˘

12
`

1 ` 1
2n

˘2 ÝÑ
nÑ`8

π2

6
.

D’où, par encadrement,
n
ř

k“1

1
k2 ÝÑ

nÑ`8

π2

6
.

Exercice 5 – Bonus
Cet exercice n’est à traiter que lorsque tout le reste l’aura été.
Trouver toutes les fonctions f : R Ñ R telles que pour tous x, y P R, on a

fpx2 ´ y2q “ pfpxq ` fpyqqpx ´ yq. (‹)

Analyse. Soit f une fonction qui vérifie (‹).
– On remarque d’abord qu’en choisissant x “ y “ 0 dans la relation donnée par (‹), on obtient fp0q “ 0.
– Ensuite, pour tout x P R, on a

fpx2
´ p´xq

2
q “ pfpxq ` fp´xqqpx ´ p´xqq, donc 2xpfpxq ` fp´xqq “ fp0q “ 0.

On en déduit que si x P R‹, fpxq “ ´fp´xq. Comme de plus fp0q “ 0, f est impaire.
– Soient maintenant x, y P R, on écrit successivement la relation (‹) avec le couple px, yq puis le couple px,´yq :

fpx2 ´ y2q “ pfpxq ` fpyqqpx ´ yq “ xfpxq ´ yfpxq ` xfpyq ´ yfpyq

fpx2 ´ y2q “ pfpxq ` fp´yqqpx ` yq “ xfpxq ` yfpxq ´ xfpyq ´ yfpyq

par imparité de f . On remarque que l’égalité de ces deux expressions s’écrit 2yfpxq ´ 2xfpyq “ 0. On a donc, pour
tous x, y P R,

yfpxq “ xfpyq.

En choisissant maintenant y “ 1, on obtient que pour tout x P R, fpxq “ fp1qx. Ainsi, f est de la forme f : x ÞÑ αx,
avec α P R.

Synthèse. Réciproquement, si f est de la forme f : x ÞÑ αx, avec α P R, alors pour tous x, y P R,

pfpxq ` fpyqqpx ´ yq “ αpx ` yqpx ´ yq “ αpx2
´ y2

q “ fpx2
´ y2

q,

donc f vérifie (‹).
Finalement, les seules fonctions solutions sont les fonctions de la forme α IdR, où α P R.
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