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DS 2

Exercice 1 — Questions indépendantes

1. Soit n € N*. Calculer Z <Z> 3k,

k=0
tanx
2. Déterminer lim
x—0 x
3. Donner la valeur de arcsin (7@) et arctan (tan (27)).

4. On considere la fonction f : 2 — arcsin(y/z) — § arcsin(2z — 1).

a. Déterminer ensemble de définition et de dérivabilité de f, et calculer f’.
b. En déduire une expression plus simple de f.

5. Résoudre dans C 'équation 22 —32+3+1i = 0.

r—1 2zx+1
6. Déterminer tous les réels x tels que —— < .
z+1 2x

7. Résoudre I'équation d’inconnue = € R :

™

arcsin(z) + arcsin(v15z) = 5"

1. La formule du bindme donne Y, (2)3"7'€ = (1+3)" = 4".
k=0

2. SizeR*, ona

tan x sinx 1 tan x sin x
= , donc —> 1, car —> let cosz —> 1.
x T COsS T x x—0 a5 x—0 z—0
Autre méthode : on reconnait un taux d’accroissement de la fonction tan : on a
tanx tanxz — tan 0 p 1
= —> tan'(0) = ———= = 1.

2 z—0 20 ©) cos?(0)
3. On a arcsin (—?) = —%. D’autre part, arctan (tan (%")) = arctan (tan (%’r — TI')) = arctan (tan (—%)) = =4
4. a. Siz€eR,leréel f(x) est bien défini si et seulement si

z=0 z =0

Vz e [-1,1], i.e. 0<z<l1 ie. xe[0,1].

2z —1e[—1,1] 0<2x<2

Finalement, ensemble de définition de f est 2 = [0, 1].

— La fonction g :  — +/z est dérivable sur |0, 1[, et g(]0, 1[) <]—1, 1[. Comme la fonction arcsin est dérivable
sur | — 1,1[, on déduit par composition que la fonction x — arcsin(4/x) est dérivable sur 0, 1[.

— La fonction h :  — 22 — 1 est dérivable sur ]0, 1[ et ~(]0, 1[) <] — 1, 1[, donc par composition & nouveau,
la fonction z — arcsin(2z — 1) est dérivable sur ]0, 1].

Ainsi, f est dérivable sur ]0, 1[. Par ailleurs, pour tout z €]0, 1],

e I 2 S S R SRR SR
2Vz V1—z 2 ,/1-(2z—1)2 W —22 Az — 4z Wr —a2  2/x— 22 ’

b. Ainsi, comme f est dérivable sur l'intervalle |0, 1[ et de dérivée nulle, la fonction est constante sur |0, 1[, et
méme sur [0, 1] par continuité de f sur [0, 1]. Ainsi, pour tout z € [0,1], on a

g
—~
8
-
II
~
—~
(=}
=
Il

w _&
2 4

N | =

1 1
—5 arcsin(—1) = iarcsinl =
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5. Le discriminant associé & I’équation polynomiale est A = —3 — 4i, qui a pour racines carrées complexes 1 — 2i et
—1 + 2i. On obtient alors les solutions 1 +1i et 2 —i.

6. L’équation est valide pour z € R\{—1,0}. Or pour tout z € R\{—1,0}, on a

x—1 2z+1 2z + 1)(z + 1) — 2z(z — 1) S5z + 1
< = >0 & —/———=>0.
z+1 2x 2z(z + 1) 2z(z + 1)

Un tableau de signe donne alors que l'ensemble des solutions est ] — 1, —1[U]0, +oo[.
7. On note d’abord que arcsin(z) + arcsin(4/15z) n’a un sens que si x € [—\/%, \/%]

Par ailleurs, si z € [—\/%, 0], alors arcsin(z) + arcsin(+/15x) < 0 donc x n’est pas solution. Or si x €]0, \/%*5]’

arcsin(z) + arcsin(v15z) = I s arcsin(z) =

5 — arcsin(v/15z)

m
2
< sin (arcsin(x)) = sin (g — arcsin(v/ 15x))
car arcsin z, arcsin(4/15z) € [O, %], donc § — arcsin(v/15z) € [0, %] On obtient alors

arcsin(z) + arcsin(v15z) = T s 2= cos(arcsin(v15z)) < z = V1 — 1522

2
Comme z > 0, on a finalement
. . 1
arcsin(z) + arcsin(v15z) = g o 22=1-152> & 162° =1 & z= i
La seule solution est donc i.
N.B. : on pouvait aussi (en justifiant) composer l’équation de départ par cos.
. J

Exercice 2 — La fonction argth
On rappelle que la fonction th est définie par

sh(x) e —e 7
VzeR, th(z) = h(z) = e o

1. Faire I’étude de la fonction th : dérivabilité et dérivée, variations, limites.

2. Montrer que la fonction th définit une bijection de R sur un intervalle J a préciser. On note argth sa bijection
réciproque.

3. Monter que argth est dérivable sur J et calculer sa dérivée.

N

1. La fonction th est dérivable sur R comme quotient de fonctions dérivables sur R dont le dénominateur ne s’annule
pas. Par ailleurs, pour tout =z € R,
sh’(z) ch(x) — ch’(z) sh(z) ch?(z) — sh?(x) 1

th'(z) = ch?(z) B ch?(z) - ch?(z) = =)

Ainsi, la fonction th est strictement croissante sur R. Par ailleurs,

@ _ A (] — =27 1— =27 B
th(z) = efoe” _fll-e ) ° — 1, care ® — 0.
e + e 7 e2(1 4+ e=22) 1+e 2 2o+ T—+0
Comme pour tout z € R, th(—z) = % = —th(z), la fonction th est impaire, donc th(z) — —1.
T—>—00

2. La fonction th est strictement croissante, continue sur R, donc par le théoréme de la bijection, elle réalise une
bijection de R sur son ensemble image th(R) =] — 1, 1[ d’aprés la question précédente.
3. Comme la fonction th’ = CI% ne s’annule pas que R, la fonction argth est dérivable sur th(R) =] — 1, 1], et pour tout
z€]—1,1],
1 1 1
argth’(z) = = = .
gth'(x) th’(argth(z)) 1 — th?(argth(x)) 1— x2
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Exercice 3 — Développement en série entiére de arctan

Le but de cet exercice est de démontrer que pour tout z € [—1, 1],

n , w2k
t = 1 -1 .
arctanz = lim (-1) h 1
k=0
1. a. Soient g € R avec ¢ = —1 et n € N. En reconnaissant la somme des termes d’une suite géométrique, simplifier
n
2. (D"
k=0
b. Pour tout entier naturel n, on considere la fonction S,, définie sur Ry par :
n 2k+1 3 5 2n+1
x x x x
VzeRy, Splz) = —1)k = -4+ 4+ (-1 )
+ Sala) ,;O( T 35 )

Pour tout x € R, calculer S/ (x) et en donner une expression simplifiée & 'aide de la question 1la.

2. Soit n € N. On définit la fonction R, sur R, par

S|

=

o

VeeRy, R,(z) = arctan(x) — S, (z).
. Calculer R, (0).
. Etablir les variations de la fonction R,, sur R, et en déduire son signe. On pourra distinguer les cas n pair
et n impair.
. Pour z € R, comparer les nombres S, (x), arctan(z) et Sp,4+1(z) selon la parité de n.

. En déduire que pour tout x € Ry et pour tout n € N, on a :

larctan(z) — Sy, (z)] <

On pourra pour cela commencer par calculer S, 1(x) — S, ().

3. Démontrer la formule annoncée.

1. a Ona Y (=) = X (=9 = % car ¢ = —1.
k=0 k=0 1
b. La fonction S,, est polynomiale donc dérivable sur R, et pour tout z € R4, on a
n n 2\n+1
1—(==7)
S/ (.13) _ Z (—l)k$2k _ Z (_xQ)k _ - \=~ )
n 2} b
k=0 k=0 Lo
en appliquant le résultat de la question la avec ¢ = =2, qui vérifie bien ¢ = —1.
2. a Ona R,(0) =0.

b. La fonction R, est dérivable sur Ry comme somme de fonctions dérivables sur R, et pour tout x € R4,

R/ (x) _ 1 - 1— (_xQ)n+l _ (_xQ)n+l _ (_1)n+1$2(n+1)
" 1+ 22 1+ 22 1+ 22 1+ a2

— Si m est pair, R;, est négative sur Ry, donc R,, décroit sur Ry. Comme R, (0) = 0, la fonction R,, est
négative sur R4 .

— Si n est impair, R;, est positive sur Ry, donc R, croit sur Ry. Comme R,(0) = 0, la fonction R,, est
positive sur R .
c. Soient z € R;.
— Si n est pair, la question précédente donne arctanz — S, (z) < 0 et arctanz — Sp41(z) = 0 car n + 1 est
impair. Finalement, S, (z) < arctanz < Sp41(x).
— Si n est impair, la question précédente donne arctan x — S, (x) = 0 et arctanz — Sp41(x) < 0 car n+ 1 est
pair. Finalement, Sp+1(z) < arctanz < Sy (z).
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d. Soit x € Ry. On a

2k+1 2n+3
_ nt+1 L

2n+3°

— Sinest pair, 0 < arctanz — Sy (x) < Spy1(x) — Sp(x), donc |arctanz — Sy (z)| < |Snt1(z) — Sn(x)].
— Sin est impair, S,i1(z) — Sn(z) < arctanz — S, (z) < 0, donc |arctanz — Sy (z)| < |Sny1(x) — Sn(z)].

Ainsi, dans tous les cas,

x2n+3
t - Sn < S’n - Sn = 5
| arctan z @) < |Sn+1(x) @ = 5—3
car x € Ry.
3. Siz € [0,1], on a, d’aprés la question précédente,
n 2k+1 2n+3
m @8 x 1
arctanx — = < <
e ,;)( 2%k+1| > 2n+3 - 2n+3
A5kt . @ k g2kt .
car z < 1. Comme TS n:m 0, on en déduit par comparaison que arctan x — kgo(—l) % n:»@ 0, i.e.
n L 22kt
& = 1l -1 .
arctan Jm (-1) kT 1
k=0
Siz €] —1,0[, on a —z €]0, 1[, donc d’apres ce qui précede,
| arctan(—z) — Sn(—2z)| o 0
Or par imparité de arctan et de Sy, on a |arctan(—z) — Sn(—z)| = | —arctanz + S, (z)| = |arctanz — Sy, (x)|, donc
|arctanx — Sp(z)] — 0.
n—+0o00
. J
Exercice 4 — Somme d’une série
Le but de cet exercice est de montrer :
21 w2
I
o1 n—+
La fonction cotan
On considere la fonction cotan définie par
cos(x)
cotan : r+— —
sin(x)

1. Déterminer ’ensemble de définition & de cotan. Montrer que cotan est impaire et m-périodique.
2. Justifier que cotan est dérivable sur 2, et calculer sa dérivée. Faire 1’étude des variations de cotan (limites
comprises) sur |0, 7[.
3. a. Montrer que pour tout x €]0, 5[, sin(z) < z < tan(z). On pourra par exemple étudier le signe de deux
fonctions bien choisies.

b. En déduire que pour tout x €]0, 7],

1
2 2
cotan®(x) < = < 1 + cotan®(z).
Calcul d’'une somme

Soit n € N. Pour tout z € C, on pose P,(z) = (z + 1)+ — (2 — 1)2n+L,

4. Montrer que les solutions de I’équation P,(z) = 0 sont les complexes z; = —i cotan (2511) avec k € [1,2n].

5. a. Vérifier que pour k€ [n+ 1,2n],on a 2n+1—k € [1,n] et zant1-k = —2k.
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b. En déduire :

2n 2n n

2 _ 2
sz—O, et sz—Zsz
k=1 k=1 k=1

6. En déduire que

n
IE T e

k=1 1<k<t<2n

7. Montrer pour z € C, que :
2 (2n+1
P,(z) = 2 Z < )sz.
= 2k
et Coy, le coefficient devant z*"dans ’expression de P,(z) ci-dessus. On

Z OQn—2
R R2p = —.

1<k<f<2n Con

On note Cop_o le coefficient devant 2272

admet?! le résultat suivant :

8. Calculer Cs,,_5 et Cy,, et montrer que

Z 9 ( km ) n(2n —1)
2 cotan = .
= 2n+1 3

Somme de la série

9. A l'aide des questions précédentes et de la question 3b, montrer que

. LA | 2
R I

s )
1. SizeR,onasinz =0<« z =0 [r], donc la fonction cotan est définie sur 2 = R\{km, k € Z}. Elle est impaire sur

2 :pourtout re R,onaxrxe Y < —xe P, etsixe D,
sin(—x) —sinz

cotan(—x) = = = —cotanz.
(=) cos(—x) cosT

Par ailleurs, cotan est m-périodique : pour tout rte Ronaze P < x+ 1€ %, et six € 2,

cotan(x + ) = sin(a + ) = TP _ otana.
cos(z + ) —cosx

2. La fonction cotan est dérivable sur 2 comme quotient de fonctions dérivables sur 2 dont le dénominateur ne s’annule
pas. Siz € Z, on a
cos’(z) sin(z) — sin’(z) cos(x) —sin?z — cos®x 1

tan'(z) = = = - = — (1 + cotan®(z)) .
cotan () sin?(x) sin? x sin?(x) (1 + cotan’(z)

Ainsi, pour tout x €]0, [, on a cotan’(z) < 0, et cotan est strictement décroissante sur |0, .

Comme sinz —> = 0" et cos0 = 1, on a cotanz — +00. On a par ailleurs cotanz —> —o0.
z—0t z—0t T

3. a — On étudie f : z — sinz — z. La fonction f est dérivable sur R et pour tout z € R, f'(z) = cosz — 1 < 0.
Ainsi, f est décroissante sur R. Par conséquent, pour tout z € Ry, on a f(z) < f(0) =0, d’ou sinz < z.
~ On étudie g : ¢ — tanz—z. La fonction g est dérivable sur ]0, Z[, et pour tout z €]0, X[, ¢/(z) = tan® z > 0,
donc g est croissante sur ]0, [. Par conséquent, pour tout z €]0, 5[, g(x) = ¢g(0) = 0, d’oti tanz > =.

b. Si z €]0, 5[, en passant & I'inverse puis au carré (les trois nombres sont positifs) on obtient
1

1
2 2
1 + cotan®(z) = 2 (z) > = = tan?(z) = cotan”(z).

1. Ce résultat sera établi dans le cours sur les polynémes.
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— 22n+1

4. On remarque que P, (1) # 0, donc 1 n’est par solution de P,(z) = 0. S

izeC, on a alors :

2n+1
z+1 z+1 2ikm
Pn = = 1l Jk 72 s = e2n+1
(=) O(i)(zfl) = € [0,2n] 1= °©
2ikm
@Z2 ! o 1l .
< 3Jke[l,2n], z= 57— (pas de solution pour k = 0)
e2n+l — ]
ikn ke
e2n+12cos (2 o= )
< 3dke[l,2n], z =
ko g sm( e )
km
3k € [1,2n], 2 = —i cotan [ —2— ).
= [1,2n], = 1coan(2n+1)
5. a Pourn+1<k<2nonan=2n+1-(n+1)=>2n+1—k>2n+1—2n=1. De plus,
z = —i cotan M = —icotan | 7+ —hm = 1 cotan Ul = =z
ik = 2+ 1 B m+1) m+1) ¢
b. On a .
Z sz+ sz sz— Z Z2n+1k=22k_zzk’=07
k=1 k=n+1 k=n+1 k=1 k=1
avec le changement d’indice k' = 2n + 1 — k. Par ailleurs,
2n n 2n n 2n n n n
sz = Zzi-F Z ZI% = ZziJr Z (—22n+1—k)2 = 2213"‘ Z Z}i/ = 22213»
k=1 k=1 k=n+1 k=1 k=n+1 k=1 k=1 k=1
toujours avec le changement d’indice k' = 2n + 1 — k.
6. On a
2n 2 2n n
(Z zk> = <Zzi>+2 Z 2k 20 = 2(22;%)—%2 Z 2k 20.
k=1 k=1 1<k<f<2n k=1 1<k<f<2n
2n n n
Comme 3] z = 0, on déduit de ce qui précede que 2 Y 27 +2 > zxze=0,s0it > 22 = — > 2 2.
k=1 = 1<k<l<2n k=1 1<k<f<2n
7. On a :
2n+1 2n+1
2 1 2 1
Pu(z) = Z ntl) o« n+ ) e
k k
k=0 k=0
2n+1
2 1 _ _ _
_ Z ( Tl]:- )Zk (1 _ (_1)2n+1 k) (O?’L a — (_1)2n+1 k _ _(_1)2n+1( 1) k _ +(_1)k)
k=0
2n+1
2 1
= ( nl;i- >zk (1 + (fl)k) (on regroupe des indices pairs et les indices impairs)
k=0
o (2041 o ( 2% o (2n+1 2kt 2%k+1
- N 24 (14 (-1) )+Z (1+(1) )
=2 =0
5 (2n+ 1)\ ok
= 2 Z ( )z .
= 2k
8. On a
o Chpg =2 2n+1 _ 2n+1 =2(2n—|—1) x 2n x (2n — 1) =2n(2n+1)(2n—1).
2n — 2 3 3x2x1 3
2n + 1 2n+1
Cap =2 =2 =2(2 1
Ainsi,
n n
k o= 2n —1
Ecotan2<2 W1)=Z—zi= Zk;XZché 2 (n3 )
k=1 n+ k=1 1<k<f<2n a0

6/7



MPSI — Lycée Montesquieu 2025-2026

9. Si k€ [1,n], on déduit de la question 3b en choisissant © = zX% que

cotan’® ke < 1 < 1 + cotan? ke
on+1) = _k2n2_ T 2n+1)°
(2n+1)2

2
(%’rT)Z , on obtient

L cotan® i < i < L 1 + cotan? i
(2n + 1)2 2n+1) = k2 T (2n+1)2 2n+1) )"

En sommant les inégalités pour k € [1,n], on obtient :

7 n@n-—1) o1 n° n(2n — 1)
< D@ S (n + )

Ainsi, en multipliant par

(2n + 1)2 3 = (2n +1)2 3
Or, on a
® anol) _ w(-d) _ r(-d)
= = - &
@n+1)2 3 12n2(1+5)*  6(1+ L) no+o 6
w2 - n(2n — 1) 2 2n? + 2n 2r? (1+ 1) m?
= = — —5
(2n + 1)2 3 (2n + 1)2 3 12 (]_ + %)2 n—+w 6
n
D’ot, par encadrement, Y, 1%2 — %.
k=1 TNTF®
. J

Exercice 5 — Bonus

Cet exercice n'est a traiter que lorsque tout le reste l'aura été.

Trouver toutes les fonctions f : R — R telles que pour tous z,y € R, on a

f@=y?) = (f(@) + f() (@ —y). (%)

Analyse. Soit f une fonction qui vérifie (*).

— On remarque d’abord qu’en choisissant = y = 0 dans la relation donnée par (*), on obtient f(0) = 0.

— Ensuite, pour tout z € R, on a

f@® = (=2)) = (f(@) + f(-2))(@ = (~x)), donc 2z(f(z)+ f(~x)) = f(0) = 0.

On en déduit que si z € R*, f(z) = —f(—=2). Comme de plus f(0) =0, f est impaire.

— Soient maintenant x,y € R, on écrit successivement la relation (x) avec le couple (z,y) puis le couple (z, —y) :

f@ =y = (F@+f@)e-y) = zf(z)-yf@)+zfy) —yf(y)
f@—y?) = (F@+f=)z+y) = zf(@)+yfle) —2fly) —yfy)
par imparité de f. On remarque que I’égalité de ces deux expressions s’écrit 2y f(z) — 2z f(y) = 0. On a donc, pour
tous z,y € R,
yf(@) = zf(y).
En choisissant maintenant y = 1, on obtient que pour tout z € R, f(z) = f(1)z. Ainsi, f est de la forme f : z — az,
avec a € R.

Synthése. Réciproquement, si f est de la forme f : z — ax, avec a € R, alors pour tous x,y € R,

f@)+f)E—y) = a@+y)(z—y) = a@@®—y®) = f(a°—y?),

donc f vérifie ().

Finalement, les seules fonctions solutions sont les fonctions de la forme aIdg, ou « € R.
. J
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