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DS 3

Corrigé

Exercice 1 — Etude d’une application
Soient E un ensemble et A, B € Z(FE). On considére I'application suivante :

[ 2(E) - Z(E)
X - (XnA)UB

1. Calculer f(@), f(A), f(B) et f(E).
2. Montrer que pour tous X,Y € Z(F), on a
XcY = f(X)c f(Y).
3. Montrer que fo f = f, c’est-a-dire que pour tout X € Z(FE), fo f(X) = f(X).
4. Soient F' un ensemble et g : ' — F une application telle que g o g = g. Montrer les équivalences suivantes :
o g est injective < g = Idp,
o g est surjective < g = Idp.

5. En déduire une condition nécessaire et suffisante sur A et B pour que f soit bijective.

1. Ona f(@) =B, f(A)=AuUB, f(B)=Bet f(E) = Au B.
2. Soient X, Y € Z(E) telsque X cY.Ona (XnA)c (Y nA)puis(XnA)uBc (YnA)uBdou f(X) c f(Y).
3. Soit X € Z(E),ona f(f(X)) =((XnA) uB)nA)uB.Or

(XnA)UB)nA = (XnAnA)u(BnA = (XnA)u(BnA).

Par conséquent, f(f(X)) = (X nA)u(BnA)uB = (XnA)uBcar (AnB)uB=B.
4. ¢ On suppose g injective. Soit z € F, on a g(g(z)) = g(z) d’ot g(z) = z par injectivité. Ainsi, g = Idp.
Réciproquement, si g = Idr, on sait que g est injective.
o On suppose g surjective. Soit y € F, il existe x € E tel que y = g(z). Alors, g(y) = g(g(x)) = g(x) = y. Ainsi,
g= IdFg.
Réciproquement, si g = Idr, on sait que g est surjective.
5. On suppose f bijective. Comme fo f = f, on a f = Idgg). D’aprés la question 1, on a alors @ = f() = B et
E=f(E)=AuB-=A.
Réciproquement, supposons B = @ et A = E. Alors, pour tout X € Z(E),ona f(X)= (X nE)u @ = X. Par
conséquent, f = Idg (g et f est bien bijective.

On a donc montré qu’une condition nécessaire et suffisante pour avoir f bijective est : B =@ et A = E.

Exercice 2 — Suites de parties fractionnaires et densité dans [0, 1]

Pour tout réel z, on appelle partie fractionnaire de x le réel

F(z) = z —|z].
On dit qu'une partie D de [0, 1] est dense dans [0, 1] si pour tous a,b € [0,1[ avec a < b, il existe y € D tel que
y € [a,b].

1. Montrer que pour tout z € R, on a F(z) € [0, 1.
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Exemples de suites de parties fractionnaires

Soit & € R. Pour tout n € N, on note u,, = F(nz) = nz — [nz|.

2. Si x € Z, que dire de la suite (uy,),,cy?

3. Soit x € Q. On écrit x = % avec (p,q) € Z x N*.

a. Montrer que (uy),,y est périodique de période ¢, c’est-a-dire :
VneN, Upiq = Un.

b. En déduire que {u,, n € N} est un ensemble fini, et montrer que {u,, n € N} n’est pas dense dans [0, 1[.

Exemples de suites denses dans [0, 1]

On dit qu'une suite réelle (x,,) est ¢ croissance lente si

(2,,) est croissante,
T, —> +0O,
n—+w
Tp4+1l — Tp — 0
n—-+00

4. Chacune des suites suivantes est-elle & croissance lente ? Justifier.

(n2)n€N’ (\/ﬁ) neN? (hl n)nGN* .

5. On considére maintenant une suite (), & croissance lente telle que zo = 0. On fixe par ailleurs a,b € [0, 1]
tels que a < b, et on note € = b — a.

a. Justifier qu’il existe N € N tel que Vn = N, |z,41 — x| < €.

b. On note A = |zn]| + 1. Justifier Uexistence de ng = min{n € N, z,, > A + a}, et préciser pourquoi ng > N.
1l pourra étre utile de faire une représentation graphique.

c. Montrer que x,, € [A + a, A+ b].

d. En déduire que {F(z,), n € N} est dense dans [0, 1].

1. On sait que pour tout z € R, on a |z| < z < |z]| + 1. En soustrayant par |z|, on obtient 0 < F(z) < 1.

2. Si @ € Z, alors pour tout n € N, on a nz € Z, donc |nz| = nz, donc u, = nz — |nz| = 0. Ainsi, (un), .y est la suite
nulle.

3. a SoitnmeN, ona
Untq = M+ @)z —|(n + Qx| = nz+ gz — |nz +ng| = nx + gz — (|nz] + ng) = nx — |nz| = Un,

car comme ng € Z, on a |nx + ng| = |nz| + ng.

b. Ainsi, par périodicité, {u,, n € N} = {uo,u1,...,uq—1}.
— Siup =...=ug1 =0, la suite (un),,.y est constante, donc {u,, n € N} n’est pas dense dans [0, 1[.
— Sinon, on note ux, le plus petit des réels non nuls parmi uo,...,uq—1. Si 0 < a < b < ug,, alors il n’y a

pas d’élément de {u,, n € N} dans [a, b]. Ainsi, {u,, n € N} n’est pas dense dans [0, 1].

4. —~Ona(n+1)?—n?*=2n+1 =7, T donc (n?)nen n’est pas & croissance lente.
n—+00

— La suite (y/n), oy €st croissante et tend vers +c0. Par ailleurs, on obtient a ’aide de la quantité conjuguée

_ WaFl—Ve)(WaEl+tve) 1 -
VR = i = Jnt1+n B RV R

donc la suite (4/n),, . est & croissance lente.

— La suite (Inn),, .. est croissante et tend vers +00. Par ailleurs,

In(n + 1) —In(n) = lnn+ln(1+l>—lnn = ln<1+l> — 0,
n

n n—40o0

donc la suite (Inn), . est & croissance lente.

5. a. Ceci découle directement de la convergence vers 0 de la suite (Zn+1 — Zn)nen.
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b. 1l suffit de justifier que N' = {n € N, =, > A + a} est une partie non vide et minorée de N. Pour commencer, 0

minore AV, puis comme z, —> +00, il existe N’ € N tel que Vn > N’, z, > A + a, donc zy» > A + a.
n— +0o0

Par ailleurs, oy < |2n|+1=A < A+ a < xn,. Comme TN < Tn,, la croissance de (z,)nen donne N < nyo.

c. Par définition de no, on a &ny—1 < A+ a < Zn,. On en déduit que Tpy—1 — Tny, < A + a — Zn,, C'est-a-dire
Tng — (A + a) < Tny — Tng—1 < &, car ng > N. Finalement, A + a < zn, < A+a+¢e < A+ b, donc
Tng € [A+a,A+1D].

d. On a vu que pour tous a,b € [0, 1] tels que a < b, il existe ng € N tel que z, € [A + a, A + b]. On en déduit
alors que |Tn,| = A, donc F(zn,) = Tn, — A. D’aprés la question précédente, on a alors F(zn,) € [a,b]. On a
alors montré la densité de {F(z,), n € N} dans [0, 1].

Exercice 3 — Suites de Cauchy
Soit (un),,cy € RY une suite de nombres réels. On dit que (u,), oy est de Cauchy si elle vérifie la propriété suivante :
Ve >0, ANeN, Vp= N, Vg = N, |up, —uy,| <e.

Remarque : une suite (uy), oy est donc de Cauchy si deux termes quelconques u, et ug sont arbitrairement proches
pourvu que p et q soient suffisamment grands.

Partie | — Une condition nécessaire de convergence

1. Montrer que toute suite de Cauchy est bornée.

2. Montrer que toute suite convergente est une suite de Cauchy.

Partie Il — Convergence des suites de Cauchy
On se propose de montrer dans cette partie que toute suite de Cauchy converge. Soit donc (uy),,cn € RY une suite de
Cauchy.
3. Pour tout n € N, on note :
Ay = {ug, k=n}.
Justifier que A,, posséde une borne inférieure et une borne supérieure. Dans la suite, on notera
v, =inf A,, et w, =supA,.

Montrer que la suite (wy),,oy est décroissante, et que la suite (vy,), .y €st croissante.
Montrer : VneN, v, < u, < w,.

Montrer que w,, — v, — 0.
n—+00

N o

Conclure que (uy),,cy converge.

1. On suppose que (un), oy est une suite de Cauchy. On utilise la définition en choisissant ¢ = 1. Il existe N € N tel que

Vp= N, Vg = N, |up —uq| < 1.

Ainsi, pour tout p = N, |up — un| < 1, donc |up|—|un| < 1 par la seconde inégalité triangulaire, donc |up| < 1+ |un]|.
Finalement, on vient de voir que la suite est bornée a partir du rang N, donc elle est bornée.

2. On suppose que (un),,oy converge vers £ € R. On fixe € > 0. On sait qu'il existe N € N tel que

Vn > N, \un—€|<%.
Soient p = N et ¢ = N. On a par inégalité triangulaire
e €
lup —uq| = |up —€+L—ug| < |up =L+ |ug—¢ < 5ty = ¢

La suite est donc de Cauchy.
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3. On a u, € A, donc A, est non vide et A, est bornée car (un),y est de Cauchy, donc bornée. Ainsi, A, possede
une borne supérieure et une borne inférieure.

4. Soit n € N. Comme w,, = sup{ux, k = n}, on a pour tout k > n + 1, ux < w,. Par conséquent, w,, est un majorant
de A,+1. On en déduit alors que w, = sup An+1 = wn+1. Ceci montre que la suite (wn)nEN est décroissante.

De méme, si n € N, comme v, = inf{ux, k = n}, on a pour tout ¥ = n + 1, ux > v,. Par conséquent, v, est un
minorant de A,;1. On en déduit alors que v, <inf A, 11 = v,41. Ceci montre que la suite (vn), oy €st croissante.
S Un S sup A'ﬂ = Wn, d’ou Up € Un < Wnp.

5. Soit n € N. Comme u,, € A, on a v, = inf A,
6. Soit € > 0. On sait qu’il existe N e Ntel que: Vp > N, Vg > N, —e < up —uq < €. Fixons n = N et montrons que
|wn — Un| = wn —un < e.
— Sig>= N,onaalors: Vp > N, u, < uqg + €. Par conséquent, uq + £ est un majorant de A,, ce qui entraine que
sup A, < uq + €. En d’autres termes, w, < uq + €.
— On a donc montré : Vg > N, w, — & < uq, c’est-a-dire que w, — € est un minorant de A,. On en déduit que
wy, — € < inf A, = v,. Par conséquent, w, — v, < e.

On a donc montré : Ve > 0, AN € N, Vn = N Wn — Un| < € c’est-a-dire que wn — Vp — 0.
’ ) ’ )
n—+00

7. Par ce qui précede, les suites (vn),,cy €t (wn), oy sont adjacentes. Ainsi, elles convergent toutes deux vers une limite
commune £ € R. Ensuite, par encadrement d’aprés la question 5, on en déduit que u,, —> ¥, ce qui conclut.
n—+0o0

Probleme - Homographies de C

On rappelle que U désigne I’ensemble des nombres complexes de module 1 : U = {z€ C, |z| = 1}.
Si a,b,c,d e C vérifient ad — be # 0, on dit que Papplication
f: C\{zeC,cz+d=0} — C
az +b
cz+d

z —

est une homographie.
Un exemple

On introduit 'application
h: C\{1} — C
iz +1
—z+1

A >

1. Justifier que h est une homographie, et montrer que pour tout z € U tel que z # 1, on a h(z) € R.
2. Montrer que h est injective.

3. Déterminer les nombres complexes w € C tels que I’équation h(z) = w ait au moins une solution. L’application
h est-elle surjective ? En déduire une partie ' de C telle que h définisse une bijection de C\{1} sur F.

Homographies conservant U

Dans cette partie, on cherche a déterminer toutes les homographies h de C telles que h est bien définie sur U, et :

Vz e U, h(z) existe et h(z) e U. (2)

On dit alors que h conserve U.

4. Préliminaire. Montrer que pour tous z,2' € C, |z + 2'|? = [2]? + |2"?| + 2 Re(22').
5. Deux types d’homographies conservant U.
a. Montrer que pour tout 6 € R, la fonction
oif
h:z— — 1
. 1)
définit une homographie qui vérifie la propriété (£?). On dira alors que h est une homographie de type (1).

b. Montrer que pour tout o € C tel que a ¢ U et tout 8 € R, la fonction

(2)
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définit une homographie qui vérifie la propriété (£?). On dira alors que h est une homographie de type (2).
On pourra (par exemple) utiliser la question 4.
6. On cherche & montrer dans cette question que toutes les homographies conservant U sont soit de type (1), soit
de type (2).
On considere a, b, ¢,d € C tels que ad — be # 0. On suppose que
L, az+t b

h:
i cz+d

est une homographie qui vérifie la propriété ().
a. A l'aide de la question 4, montrer que pour tout 6 € R,
la? + [b]? + 2Re(abe’?) = |[c|? + |d|* + 2 Re(cde'?).
b. Soient u,v € C. Montrer que :
si pour tout 6 € R, u + 2NRe(ve'?) =0, alors u=1v = 0.
Déduire alors de la question précédente que |a|? + [b|> = |c|> + |d|? et que ab = cd.
¢. Sia =0, montrer que h est une homographie de type (1).

d. On suppose désormais que a # 0. Montrer que
(lal* = le[*)(Jal* = |d|*) = o.

e. Montrer que si |a| = |¢|, alors ad — be = 0. Qu’en déduire dans ce cas?
f- Montrer que si |a| = |d|, alors h est une homographie de type (2), et conclure.

1. L’application h est de la forme de I’énoncé avec a = b =1i,¢c= —1 et d = 1, donc ad — bc = 2i = 0, et h est bien une

homographie. Si ze Uet z=1, 0n a

h(z) = (iz+i)(-2+1) _ —izZ+i(z—2)+i _ —ilz]> —2Tm(z) +i _ 2TIm(2)

(—z+1)(-z+1) [1— 22 [1— 22 T =z

car |z| = 1. Ainsi, h(z) € R.
2. Soient z,2’ € C\{1}. On suppose que h(z) = h(z'), c’est-a-dire

(iz+i)(=2"+1) = iz +i)(—z+1), ouencore —izz' +i(z—2")+i= —izz' +i(z' —2)+i.

On en déduit que 2i(z — 2’) = 0, donc z = 2. La fonction h est alors injective.
3. Soit w e C. Si z € C\{1}, on a

hiz)=w < (iz+1) = w(l—2) © z(i+w)=w—1i

Par conséquent, I’équation a une unique solution si w = —i, et n’a pas de solution sinon. On en déduit :

— que h n’est pas surjective car —i n’a pas d’ antécédent,

— que h est bijective de C\{1} sur C\{—i}.
4. Ona: |z+22 = (242)E+72) = 22422 + 22 + 27 = |2]> + 22 + 22/ + |Z)? = |2 + |2?| + 2Re(22).
5. a. L’application est de la forme de I’énoncé avec a = 0, b = €, ¢ = 1 et d = 0, donc ad — be = —'® = 0, donc h

est bien une homographie.

le*]
|2]

=1

Par ailleurs, si z € U, on a z = 0 donc h(z) est bien défini, et |h(2)| =
b. L’application est de la forme de 1’énoncé avec a = €%, b = ae'®, ¢ = @ et d = 1, donc h est bien une homographie,
car ad — be = (1 — a@) = (1 — |o|?) = 0, du fait que |a| = 1.
Par ailleurs,
— si a = 0, 'application h est définie sur C donc sur U,
— si =0, alors h est définie sur C\{—2} donc sur U car |[—%| =1 donc —% ¢ U.

SizeU, ona
22+ o) + 2Re(za) 1+ |a)® + 2%Re(za)

R = 167 S vy,
|az|? + 1+ 2Re(za) |@]?2 + 1 + 2%Re(za)
car |z| = 1 et @] = |af.
N.B. : on pouvait aussi remarquer que comme |Z| =1, on a |h(2)| = % = }?:;} =lcarz+a=a+2z
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6. a. Pourtout # € R, ona e € U, donc comme h vérifie (), on a |ae'? +b| = |ce!? +d|, donc |ae'® +b|? = |ce'? +d|>.
La question 4 donne alors :

lae’®)? + b + 2Re(ae'’b) = |ce|* + |d|* + 2Re(ce?d)

d’ott |a|? + b + 2Re(abe®) = |c¢|* + |d|? + 2 Re(cdel?).
b. On suppose que pour tout 8 € R, u + 2%Re(ve'®) = 0.

En choisissant 6 = 0 et 6 = 7, puis 0 = 5 et § = — 7, on obtient
u+2Rev=0 (1) uis u+ 2%Re(iv) =0 done u—2Jmv=0 (3)
u—2Rev=0 (2) P u+ 2Re(—iv) = 0 u+2Imo=0 (4)

En sommant (1) et (2), on déduit que Rewv = 0. En sommant (3) et (4), on déduit que IJmv = 0. Finalement,
v =0, donc u = 0.

La question précédente donne : pour tout 6 € R, |a|*+ [b|* —(|c|* +[d|?) +2%Re((ab—cd)e?) = 0. En appliquant
ce qui précéde a u = |a|® + [b]> — (|¢|> + |d|*) et v = ab— cd, on obtient u = v = 0, donc |a|? + [b]* = |c? + |d|
et que ab = cd.

c. Sia=0,o0nacd=0 dapres la question précédente. Comme ad — bc = 0, on a bc = 0, donc ¢ = 0, ce qui
entraine que d = 0. Finalement, h est de la forme
b
h:z— —
cz
Comme |b|*> = |c|?, on a |g| =1, donc % s'écrit €'’ pour un réel 6 € R. Ainsi, h: z — %, et h est de type (1).
d. Ona (laf* = |c*)(la]* = |d*) = |a* — |ad|* — [cal* + |cd|*.

Comme ab = cd, on a |ab|® = |ed|?, donc
(la* = le[*)(lal* = [d[*) = la|* ~ |ad|* — |cal* + |ab]* = [a|*(Jal® —|d|* —|c|* + [b]*) = 0

d’apres la question 6b.

e. Si |a| = |c|, alors c+ = 0, et on a 2 € U, donc il existe § € R tel que a = ce'’. Comme ab = cd, on en déduit
que cbe'® = ¢d. Comme ¢ = 0, on a b = de'’. Ansi, ad — be = ce!?d — de'?c = 0. On en déduit que dans ce cas h
n’est pas une homographie, donc ce cas est impossible.

f Si|a| = |d|, alors comme ci-dessus il existe 6 € R tel que % = e'’. Alors, pour tout z € C tel que cz + d = 0,
b b
z+ 4 z+
h(Z) = = C A = o @ =
On pose a = %. Comme ab = cd, on a alors s = ;—;1 = %. L’égalité a = % donne ensuite £ = % % = % = a.
Par ailleurs, on déduit aussi de ab = cd que [b] = |c|, donc si @ = 2 € U, on a |a| = [b] = ||, ce qui est
impossible d’aprés la question précédente. On a donc bien montré que ’homographie h est de type (2).
. J
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