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DS 3

Corrigé

Exercice 1 – Étude d’une application
Soient E un ensemble et A,B P PpEq. On considère l’application suivante :

f : PpEq Ñ PpEq

X ÞÑ pX X Aq Y B

1. Calculer fp∅q, fpAq, fpBq et fpEq.
2. Montrer que pour tous X,Y P PpEq, on a

X Ă Y ñ fpXq Ă fpY q.

3. Montrer que f ˝ f “ f , c’est-à-dire que pour tout X P PpEq, f ˝ fpXq “ fpXq.
4. Soient F un ensemble et g : F Ñ F une application telle que g ˝ g “ g. Montrer les équivalences suivantes :

˛ g est injective ô g “ IdF ,
˛ g est surjective ô g “ IdF .

5. En déduire une condition nécessaire et suffisante sur A et B pour que f soit bijective.

1. On a fp∅q “ B, fpAq “ A Y B, fpBq “ B et fpEq “ A Y B.
2. Soient X,Y P PpEq tels que X Ă Y . On a pX XAq Ă pY XAq puis pX XAq YB Ă pY XAq YB d’où fpXq Ă fpY q.
3. Soit X P PpEq, on a fpfpXqq “ pppX X Aq Y Bq X Aq Y B. Or

ppX X Aq Y Bq X A “ pX X A X Aq Y pB X Aq “ pX X Aq Y pB X Aq.

Par conséquent, fpfpXqq “ pX X Aq Y pB X Aq Y B “ pX X Aq Y B car pA X Bq Y B “ B.
4. ˛ On suppose g injective. Soit x P F , on a gpgpxqq “ gpxq d’où gpxq “ x par injectivité. Ainsi, g “ IdF .

Réciproquement, si g “ IdF , on sait que g est injective.
˛ On suppose g surjective. Soit y P F , il existe x P E tel que y “ gpxq. Alors, gpyq “ gpgpxqq “ gpxq “ y. Ainsi,

g “ IdF .
Réciproquement, si g “ IdF , on sait que g est surjective.

5. On suppose f bijective. Comme f ˝ f “ f , on a f “ IdPpEq. D’après la question 1, on a alors ∅ “ fp∅q “ B et
E “ fpEq “ A Y B “ A.
Réciproquement, supposons B “ ∅ et A “ E. Alors, pour tout X P PpEq, on a fpXq “ pX X Eq Y ∅ “ X. Par
conséquent, f “ IdPpEq et f est bien bijective.
On a donc montré qu’une condition nécessaire et suffisante pour avoir f bijective est : B “ ∅ et A “ E.

Exercice 2 – Suites de parties fractionnaires et densité dans r0, 1r

Pour tout réel x, on appelle partie fractionnaire de x le réel

F pxq “ x ´ txu.

On dit qu’une partie D de r0, 1r est dense dans r0, 1r si pour tous a, b P r0, 1r avec a ă b, il existe y P D tel que
y P ra, bs.

1. Montrer que pour tout x P R, on a F pxq P r0, 1r.
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Exemples de suites de parties fractionnaires

Soit x P R. Pour tout n P N, on note un “ F pnxq “ nx ´ tnxu.

2. Si x P Z, que dire de la suite punqnPN ?
3. Soit x P Q. On écrit x “

p
q avec pp, qq P Z ˆ N‹.

a. Montrer que punqnPN est périodique de période q, c’est-à-dire :

@n P N, un`q “ un.

b. En déduire que tun, n P Nu est un ensemble fini, et montrer que tun, n P Nu n’est pas dense dans r0, 1r.

Exemples de suites denses dans r0, 1r

On dit qu’une suite réelle pxnq est à croissance lente si
$

’

’

&

’

’

%

pxnq est croissante,
xn ÝÑ

nÑ`8
`8,

xn`1 ´ xn ÝÑ
nÑ`8

0

4. Chacune des suites suivantes est-elle à croissance lente ? Justifier.

pn2qnPN, p
?
nqnPN, plnnqnPN‹ .

5. On considère maintenant une suite pxnqnPN à croissance lente telle que x0 “ 0. On fixe par ailleurs a, b P r0, 1r

tels que a ă b, et on note ε “ b ´ a.
a. Justifier qu’il existe N P N tel que @n ě N, |xn`1 ´ xn| ă ε.
b. On note A “ txN u ` 1. Justifier l’existence de n0 “ mintn P N, xn ě A ` au, et préciser pourquoi n0 ą N .

Il pourra être utile de faire une représentation graphique.
c. Montrer que xn0 P rA ` a,A ` bs.
d. En déduire que tF pxnq, n P Nu est dense dans r0, 1r.

1. On sait que pour tout x P R, on a txu ď x ă txu ` 1. En soustrayant par txu, on obtient 0 ď F pxq ă 1.
2. Si x P Z, alors pour tout n P N, on a nx P Z, donc tnxu “ nx, donc un “ nx ´ tnxu “ 0. Ainsi, punqnPN est la suite

nulle.
3. a. Soit n P N, on a

un`q “ pn ` qqx ´ tpn ` qqxu “ nx ` qx ´ tnx ` nqu “ nx ` qx ´ ptnxu ` nqq “ nx ´ tnxu “ un,

car comme nq P Z, on a tnx ` nqu “ tnxu ` nq.
b. Ainsi, par périodicité, tun, n P Nu “ tu0, u1, . . . , uq´1u.

– Si u0 “ . . . “ uq´1 “ 0, la suite punqnPN est constante, donc tun, n P Nu n’est pas dense dans r0, 1r.
– Sinon, on note uk0 le plus petit des réels non nuls parmi u0, . . . , uq´1. Si 0 ă a ă b ă uk0 , alors il n’y a

pas d’élément de tun, n P Nu dans ra, bs. Ainsi, tun, n P Nu n’est pas dense dans r0, 1r.
4. – On a pn ` 1q2 ´ n2 “ 2n ` 1 ÝÑ

nÑ`8
`8, donc pn2qnPN n’est pas à croissance lente.

– La suite p
?
nqnPN est croissante et tend vers `8. Par ailleurs, on obtient à l’aide de la quantité conjuguée

?
n ` 1 ´

?
n “

p
?
n ` 1 ´

?
nqp

?
n ` 1 `

?
nq

?
n ` 1 `

?
n

“,
1

?
n ` 1 `

?
n

ÝÑ
nÑ`8

0,

donc la suite p
?
nqnPN est à croissance lente.

– La suite plnnqnPN‹ est croissante et tend vers `8. Par ailleurs,

lnpn ` 1q ´ lnpnq “ lnn ` ln

ˆ

1 `
1

n

˙

´ lnn “ ln

ˆ

1 `
1

n

˙

ÝÑ
nÑ`8

0,

donc la suite plnnqnPN‹ est à croissance lente.
5. a. Ceci découle directement de la convergence vers 0 de la suite pxn`1 ´ xnqnPN.
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b. Il suffit de justifier que N “ tn P N, xn ě A ` au est une partie non vide et minorée de N. Pour commencer, 0
minore N , puis comme xn ÝÑ

nÑ`8
`8, il existe N 1 P N tel que @n ě N 1, xn ě A ` a, donc xN 1 ě A ` a.

Par ailleurs, xN ă txN u ` 1 “ A ď A ` a ď xn0 . Comme xN ă xn0 , la croissance de pxnqnPN donne N ă n0.
c. Par définition de n0, on a xn0´1 ă A ` a ď xn0 . On en déduit que xn0´1 ´ xn0 ă A ` a ´ xn0 , c’est-à-dire

xn0 ´ pA ` aq ă xn0 ´ xn0´1 ă ε, car n0 ą N . Finalement, A ` a ď xn0 ă A ` a ` ε ă A ` b, donc
xn0 P rA ` a,A ` bs.

d. On a vu que pour tous a, b P r0, 1r tels que a ă b, il existe n0 P N tel que xn0 P rA ` a,A ` bs. On en déduit
alors que txn0 u “ A, donc F pxn0q “ xn0 ´ A. D’après la question précédente, on a alors F pxn0q P ra, bs. On a
alors montré la densité de tF pxnq, n P Nu dans r0, 1r.

Exercice 3 – Suites de Cauchy
Soit punqnPN P RN une suite de nombres réels. On dit que punqnPN est de Cauchy si elle vérifie la propriété suivante :

@ε ą 0, DN P N, @p ě N, @q ě N, |up ´ uq| ă ε.

Remarque : une suite punqnPN est donc de Cauchy si deux termes quelconques up et uq sont arbitrairement proches
pourvu que p et q soient suffisamment grands.

Partie I – Une condition nécessaire de convergence

1. Montrer que toute suite de Cauchy est bornée.
2. Montrer que toute suite convergente est une suite de Cauchy.

Partie II – Convergence des suites de Cauchy

On se propose de montrer dans cette partie que toute suite de Cauchy converge. Soit donc punqnPN P RN une suite de
Cauchy.

3. Pour tout n P N, on note :
An “ tuk, k ě nu .

Justifier que An possède une borne inférieure et une borne supérieure. Dans la suite, on notera

vn “ inf An, et wn “ supAn.

4. Montrer que la suite pwnqnPN est décroissante, et que la suite pvnqnPN est croissante.
5. Montrer : @n P N, vn ď un ď wn.
6. Montrer que wn ´ vn ÝÑ

nÑ`8
0.

7. Conclure que punqnPN converge.

1. On suppose que punqnPN est une suite de Cauchy. On utilise la définition en choisissant ε “ 1. Il existe N P N tel que

@p ě N, @q ě N, |up ´ uq| ă 1.

Ainsi, pour tout p ě N, |up ´ uN | ď 1, donc |up|´|uN | ď 1 par la seconde inégalité triangulaire, donc |up| ď 1`|uN |.
Finalement, on vient de voir que la suite est bornée à partir du rang N , donc elle est bornée.

2. On suppose que punqnPN converge vers ℓ P R. On fixe ε ą 0. On sait qu’il existe N P N tel que

@n ě N, |un ´ ℓ| ă
ε

2
.

Soient p ě N et q ě N . On a par inégalité triangulaire

|up ´ uq| “ |up ´ ℓ ` ℓ ´ uq| ď |up ´ ℓ| ` |uq ´ ℓ| ă
ε

2
`

ε

2
“ ε.

La suite est donc de Cauchy.
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3. On a un P An donc An est non vide et An est bornée car punqnPN est de Cauchy, donc bornée. Ainsi, An possède
une borne supérieure et une borne inférieure.

4. Soit n P N. Comme wn “ suptuk, k ě nu, on a pour tout k ě n ` 1, uk ď wn. Par conséquent, wn est un majorant
de An`1. On en déduit alors que wn ě supAn`1 “ wn`1. Ceci montre que la suite pwnqnPN est décroissante.
De même, si n P N, comme vn “ inftuk, k ě nu, on a pour tout k ě n ` 1, uk ě vn. Par conséquent, vn est un
minorant de An`1. On en déduit alors que vn ď inf An`1 “ vn`1. Ceci montre que la suite pvnqnPN est croissante.

5. Soit n P N. Comme un P An, on a vn “ inf An ď un ď supAn “ wn, d’où vn ď un ď wn.
6. Soit ε ą 0. On sait qu’il existe N P N tel que : @p ě N, @q ě N, ´ε ă up ´ uq ă ε. Fixons n ě N et montrons que

|wn ´ un| “ wn ´ un ď ε.
– Si q ě N , on a alors : @p ě N, up ă uq ` ε. Par conséquent, uq ` ε est un majorant de An, ce qui entraine que

supAn ď uq ` ε. En d’autres termes, wn ď uq ` ε.
– On a donc montré : @q ě N, wn ´ ε ď uq, c’est-à-dire que wn ´ ε est un minorant de An. On en déduit que

wn ´ ε ď inf An “ vn. Par conséquent, wn ´ vn ď ε.
On a donc montré : @ε ą 0, DN P N, @n ě N, |wn ´ un| ď ε, c’est-à-dire que wn ´ vn ÝÑ

nÑ`8
0.

7. Par ce qui précède, les suites pvnqnPN et pwnqnPN sont adjacentes. Ainsi, elles convergent toutes deux vers une limite
commune ℓ P R. Ensuite, par encadrement d’après la question 5, on en déduit que un ÝÑ

nÑ`8
ℓ, ce qui conclut.

Problème – Homographies de C
On rappelle que U désigne l’ensemble des nombres complexes de module 1 : U “ tz P C, |z| “ 1u.
Si a, b, c, d P C vérifient ad ´ bc ‰ 0, on dit que l’application

f : Cz tz P C, cz ` d “ 0u Ñ C

z ÞÑ
az ` b

cz ` d

est une homographie.

Un exemple

On introduit l’application
h : Cz t1u Ñ C

z ÞÑ
iz ` i

´z ` 1

1. Justifier que h est une homographie, et montrer que pour tout z P U tel que z ‰ 1, on a hpzq P R.
2. Montrer que h est injective.
3. Déterminer les nombres complexes w P C tels que l’équation hpzq “ w ait au moins une solution. L’application

h est-elle surjective ? En déduire une partie F de C telle que h définisse une bijection de Czt1u sur F .

Homographies conservant U

Dans cette partie, on cherche à déterminer toutes les homographies h de C telles que h est bien définie sur U, et :

@z P U, hpzq existe et hpzq P U. (P)
On dit alors que h conserve U.

4. Préliminaire. Montrer que pour tous z, z1 P C, |z ` z1|2 “ |z|2 ` |z12| ` 2Repzz̄1q.
5. Deux types d’homographies conservant U.

a. Montrer que pour tout θ P R, la fonction

h : z ÞÑ
eiθ

z
(1)

définit une homographie qui vérifie la propriété (P). On dira alors que h est une homographie de type (1).
b. Montrer que pour tout α P C tel que α R U et tout θ P R, la fonction

h : z ÞÑ eiθ
z ` α

ᾱz ` 1
(2)
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définit une homographie qui vérifie la propriété (P). On dira alors que h est une homographie de type (2).
On pourra (par exemple) utiliser la question 4.

6. On cherche à montrer dans cette question que toutes les homographies conservant U sont soit de type (1), soit
de type (2).
On considère a, b, c, d P C tels que ad ´ bc ‰ 0. On suppose que

h : z ÞÑ
az ` b

cz ` d

est une homographie qui vérifie la propriété (P).
a. À l’aide de la question 4, montrer que pour tout θ P R,

|a|2 ` |b|2 ` 2Repab̄eiθq “ |c|2 ` |d|2 ` 2Repcd̄eiθq.

b. Soient u, v P C. Montrer que :

si pour tout θ P R, u ` 2Repveiθq “ 0, alors u “ v “ 0.

Déduire alors de la question précédente que |a|2 ` |b|2 “ |c|2 ` |d|2 et que ab̄ “ cd̄.
c. Si a “ 0, montrer que h est une homographie de type (1).
d. On suppose désormais que a ‰ 0. Montrer que

p|a|2 ´ |c|2qp|a|2 ´ |d|2q “ 0.

e. Montrer que si |a| “ |c|, alors ad ´ bc “ 0. Qu’en déduire dans ce cas ?
f. Montrer que si |a| “ |d|, alors h est une homographie de type (2), et conclure.

1. L’application h est de la forme de l’énoncé avec a “ b “ i, c “ ´1 et d “ 1, donc ad ´ bc “ 2i ­“ 0, et h est bien une
homographie. Si z P U et z ­“ 1, on a

hpzq “
piz ` iqp´z̄ ` 1q

p´z ` 1qp´z̄ ` 1q
“

´izz̄ ` ipz ´ z̄q ` i

|1 ´ z|2
“

´i|z|2 ´ 2 Impzq ` i

|1 ´ z|2
“ ´

2 Impzq

|1 ´ z|2
,

car |z| “ 1. Ainsi, hpzq P R.
2. Soient z, z1 P Czt1u. On suppose que hpzq “ hpz1q, c’est-à-dire

piz ` iqp´z1
` 1q “ piz1

` iqp´z ` 1q, ou encore ´ izz1
` ipz ´ z1

q ` i “ ´izz1
` ipz1

´ zq ` i.

On en déduit que 2ipz ´ z1q “ 0, donc z “ z1. La fonction h est alors injective.
3. Soit w P C. Si z P Czt1u, on a

hpzq “ w ô piz ` iq “ wp1 ´ zq ô zpi ` wq “ w ´ i.

Par conséquent, l’équation a une unique solution si w ­“ ´i, et n’a pas de solution sinon. On en déduit :
– que h n’est pas surjective car ´i n’a pas d’ antécédent,
– que h est bijective de Czt1u sur Czt´iu.

4. On a : |z ` z1|2 “ pz ` z1qpz̄ ` z̄1q “ zz̄ ` zz̄1 ` z̄z1 ` z1z̄1 “ |z|2 ` zz̄1 ` zz̄1 ` |z1|2 “ |z|2 ` |z12| ` 2Repzz̄1q.

5. a. L’application est de la forme de l’énoncé avec a “ 0, b “ eiθ, c “ 1 et d “ 0, donc ad ´ bc “ ´eiθ ­“ 0, donc h
est bien une homographie.

Par ailleurs, si z P U, on a z ­“ 0 donc hpzq est bien défini, et |hpzq| “
|eiθ |

|z|
“ 1.

b. L’application est de la forme de l’énoncé avec a “ eiθ, b “ αeiθ, c “ ᾱ et d “ 1, donc h est bien une homographie,
car ad ´ bc “ eiθp1 ´ αᾱq “ eiθp1 ´ |α|2q ­“ 0, du fait que |α| ­“ 1.
Par ailleurs,

– si α “ 0, l’application h est définie sur C donc sur U,
– si α ­“ 0, alors h est définie sur Czt´ 1

ᾱ
u donc sur U car

ˇ

ˇ´ 1
ᾱ

ˇ

ˇ ­“ 1 donc ´ 1
ᾱ

R U.
Si z P U, on a

|hpzq|
2

“ |eiθ|
|z|2 ` |α|2 ` 2Repzᾱq

|ᾱz|2 ` 1 ` 2Repzᾱq
“

1 ` |α|2 ` 2Repzᾱq

|ᾱ|2 ` 1 ` 2Repzᾱq
“ 1,

car |z| “ 1 et |ᾱ| “ |α|.
N.B. : on pouvait aussi remarquer que comme |z̄| “ 1, on a |hpzq| “

|z`α|

|ᾱz`1| |z̄|
“

|z`α|

|ᾱ`z̄|
“ 1 car z ` α “ ᾱ ` z̄.
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6. a. Pour tout θ P R, on a eiθ P U, donc comme h vérifie (P), on a |aeiθ `b| “ |ceiθ `d|, donc |aeiθ `b|2 “ |ceiθ `d|2.
La question 4 donne alors :

|aeiθ|
2

` |b|
2

` 2Repaeiθ b̄q “ |ceiθ|
2

` |d|
2

` 2Repceiθd̄q

d’où |a|2 ` |b|2 ` 2Repab̄eiθq “ |c|2 ` |d|2 ` 2Repcd̄eiθq.
b. On suppose que pour tout θ P R, u ` 2Repveiθq “ 0.

En choisissant θ “ 0 et θ “ π, puis θ “ π
2

et θ “ ´π
2

, on obtient
"

u ` 2Re v “ 0 p1q

u ´ 2Re v “ 0 p2q
puis

"

u ` 2Repivq “ 0
u ` 2Rep´ivq “ 0

donc
"

u ´ 2 Im v “ 0 p3q

u ` 2 Im v “ 0 p4q

En sommant (1) et (2), on déduit que Re v “ 0. En sommant (3) et (4), on déduit que Im v “ 0. Finalement,
v “ 0, donc u “ 0.

La question précédente donne : pour tout θ P R, |a|2 `|b|2 ´p|c|2 `|d|2q`2Reppab̄´cd̄qeiθq “ 0. En appliquant
ce qui précède à u “ |a|2 ` |b|2 ´ p|c|2 ` |d|2q et v “ ab̄ ´ cd̄, on obtient u “ v “ 0, donc |a|2 ` |b|2 “ |c|2 ` |d|2

et que ab̄ “ cd̄.
c. Si a “ 0, on a cd̄ “ 0 d’après la question précédente. Comme ad ´ bc ­“ 0, on a bc ­“ 0, donc c ­“ 0, ce qui

entraîne que d “ 0. Finalement, h est de la forme

h : z ÞÑ
b

cz

Comme |b|2 “ |c|2, on a
ˇ

ˇ

b
c

ˇ

ˇ “ 1, donc b
c

s’écrit eiθ pour un réel θ P R. Ainsi, h : z ÞÑ eiθ

z
, et h est de type (1).

d. On a p|a|2 ´ |c|2qp|a|2 ´ |d|2q “ |a|4 ´ |ad|2 ´ |ca|2 ` |cd|2.
Comme ab̄ “ cd̄, on a |ab|2 “ |cd|2, donc

p|a|
2

´ |c|
2
qp|a|

2
´ |d|

2
q “ |a|

4
´ |ad|

2
´ |ca|

2
` |ab|

2
“ |a|

2
p|a|

2
´ |d|

2
´ |c|

2
` |b|

2
q “ 0

d’après la question 6b.
e. Si |a| “ |c|, alors c` ­“ 0, et on a a

c
P U, donc il existe θ P R tel que a “ ceiθ. Comme ab̄ “ cd̄, on en déduit

que cb̄eiθ “ cd̄. Comme c ­“ 0, on a b “ deiθ. Ansi, ad ´ bc “ ceiθd ´ deiθc “ 0. On en déduit que dans ce cas h
n’est pas une homographie, donc ce cas est impossible.

f. Si |a| “ |d|, alors comme ci-dessus il existe θ P R tel que a
d

“ eiθ. Alors, pour tout z P C tel que cz ` d ­“ 0,

hpzq “
a

d

z ` b
a

c
d
z ` 1

“ eiθ
z ` b

a
c
d
z ` 1

.

On pose α “ b
a

. Comme ab̄ “ cd̄, on a alors c
d

“ ab̄
dd̄

“ ab̄
|d|

. L’égalité a “
|a|

ā
donne ensuite c

d
“

|a|

|d|
b̄
ā

“ b̄
ā

“ ᾱ.

Par ailleurs, on déduit aussi de ab̄ “ cd̄ que |b| “ |c|, donc si α “ b
a

P U, on a |a| “ |b| “ |c|, ce qui est
impossible d’après la question précédente. On a donc bien montré que l’homographie h est de type (2).
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