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DS 4

Corrigé

Exercice 1 — Triplets pythagoriciens

On dit que (z,y,2) € (N*)3 est un triplet pythagoricien s’il vérifie I’équation :
2?4+ y? = 22 (2)

Nous cherchons dans cet exercice a déterminer tous les triplets pythagoriciens.

1. Donner un exemple simple de triplet pythagoricien.
2. On suppose dans un premier temps que (z,y, z) € (N*)3 est un triplet pythagoricien tel que x et y sont premiers
entre euz.
a. Montrer que si n,m € N* et n?|m?2, alors n|m.
On pourra par exemple s’intéresser d vy(n) et v,(m), ol p est un nombre premier.
b. En déduire que z et y sont premiers entre eux. Que dire de z et x 7
c. Montrer que pour tout k € Z, k? = 0[4] ou k* = 1[4] (on pourra distinguer suivant la congruence de k
modulo 4).
d. En utilisant la question précédente, montrer que = et y n’ont pas la méme parité, et préciser la parité de z.

Dans toute la suite de la question 2, on suppose que x est pair et y impair. On note T = 2a avec a € N*.

e. Montrer qu’il existe b, c € N* tels que

b+c=z
b—c=y

et en déduire que a? = be.

f. Montrer que b et ¢ sont premiers entre eux.

g. Montrer qu’il existe u, v € N* tels que b = u? et ¢ = v2.

h. En déduire que = = 2uv, y = u® —v? et z = u? + v2.
3. On considére maintenant le cas général : soit (x,%, z) € (N*)? un triplet pythagoricien. On note d = z A y.

Justifier que d| z, et en se ramenant & la question 2, montrer qu’il existe u, v € N* tels que
r = 2duv
y =d(u®—?) (1)
2z =d(u? + v?)
4. Réciproquement, montrer que tout triplet (z,y, z) vérifiant (1) avec d,u,v € N* et u > v, est solution de (£).
Conclure, et donner un autre exemple de triplet pythagoricien.

1. Le triplet (3,4,5) est solution.

2. a. Soit p un nombre premier. On a n”® | m* donc v, (n*) < v, (M?). Or v, (n?) = 2v,(n) et v, (M?) = 2v,(m).
On a donc vp(n) < vp(m). Cela implique n | m.

b. Soit d un diviseur commun de z et y. Alors d? | z? et d?|2%. On en déduit que d? | 2% — y?, donc d* | z>. Par la
question précédente, on a d|z. Ainsi, d est un diviseur commun de z et y, et d € {—1,1}. On en déduit que z
et y sont premiers entre eux. On montre de méme maniére que x et z sont aussi premiers entre eux.

c. Soit k € Z,
— si k= 0[4], alors k? = 0[4],
— si k= 1[4], alors k% = 1[4],
— si k=2[4], alors k> =4 = 0[4],
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— si k=3[4], alors k> =9 = 1 [4].
Ainsi, dans tous les cas, k? = 0[4] ou k* = 1 [4].

d. Comme z et y sont premiers entre eux, ils ne peuvent étre tous deux pairs. Par ailleurs, si on suppose qu’ils sont
tous deux impairs, alors d’aprés la question précédente, x2 + y* = 2[4], donc 2z = 2[4], ce qui est impossible
d’apres la question précédente.

Comme z et y n’ont pas méme parité, I'un est pair et 'autre impair. Supposons que x est pair et y impair.
Alors on a 2 = 0[4] et y* = 1[4], donc 2 + y* = 1[4], et 2*> = 1[4]. De méme si x est impair et y est pair.
Ceci assure que z est impair, toujours d’apres la question précédente.

e. On remarque que
{b—i—c:z {2b:z+y
=
2c=2z—1
Or y et z sont impairs, donc z+y et z—y sont pairs. Il existe donc bien b, c € Z tels que z+y = 2bet z—y = 2c¢.

2—22+9y?>y?donc z >y, et z—y > 0. On a aussi z +y > 0. Ceci entraine que b, c € N*.

On a par ailleurs z
On a ensuite 2° = 2% — y* = (2 — y)(2 +y) = 4bc, donc 4a® = 4bc, puis a® = be.

f- Si d est un diviseur commun a b et ¢, alors d|b+ c et d|b— ¢, donc d| z et d|y. Comme z et y sont premiers
entre eux, on a alors d € {—1,1}. Par conséquent, b et ¢ sont premiers entre eux.
On pouvait aussi exploiter une relation de Bézout liant z et y pour en obtenir une liant b et c.

g. On note pi,...,pr les facteurs premiers de a. Pour tout ¢, comme p;|bc, on a p;|b ou p;|c par le lemme
d’Euclide, et on ne peut avoir les deux car b A ¢ = 1. On peut donc séparer les diviseurs premiers en deux
ensembles disjoints : ceux qui divisent b et ceux qui divisent c.

Quitte a réordonner, on peut supposer que pi,...,pr divisent b, et px+1,...,pr divisent c. Ce sont les seuls
diviseurs premiers de b et ¢ (car tout autre diviseur premier diviserait aussi a). Par ailleurs, pour tout ¢, si on
note a; = vVp,(a), ON a

Up; (a2) = Up; (b) + Up, (C)v donc  2a; = Up; (b) + Up; (C)

Ainsi, si i € [1,k], on a vy, (b) = 2ay, et sii € [k + 1,r], on a vp, (¢) = 2a;. Finalement,

2 2 2 20 S0y @ N2
b =pi™...p.F = (pit ... ppF)T, et c:pkﬁ“...pra = (pkff{lpff) .
D’ot le résultat en posant u = p{'...pp* et v = p:fl’l LLpoT.

h. On a a® = be = (uv)?, donc comme z? = 4a® = 4(uww)?, on a x = 2uw. Par ailleurs, y = b — ¢ = u*> — v? et

z=b+c=u’®+v%

3. Comme d|z et d|y, on a d*|z* + 4>, et d*| 2%, Par la question 2a, on a alors d|z, et on peut noter z = dz’ avec
Zz' € N*. Comme d = x A y, il existe par ailleurs z’,y’ tels que x = dz’, y = dy’ et 2’ Ay’ = 1. Ainsi, en divisant
léquation par d2, on obtient x'% + 32 = 22

D’aprés la question précédente, comme =’ A y' = 1, on a l'existence de u,v € N* tels que 2’ = 2uv, v’ = u? — v? et

2" = u? + v?. En multipliant par d, ceci donne exactement (1).
4. Simple vérification. I’ensemble des triplets pythagoriciens est I’ensemble constitué des triplets de la forme précédente
ou obtenu en échangeant ’ordre des deux premiers nombres.

Le triplet de la question 1 correspond aux choix d = 1, u = 2 et v = 1. En choisissant d = 1, u = 3 et v = 2, on
obtient le triplet pythagoricien (12,5, 13).

Exercice 2 — Exponentielle de matrice

Dans cet exercice, on cherche a donner un sens a ’exponentielle d’'une matrice carrée dans certains cas. Pour ce faire,
on s’appuie sur une égalité qui caractérise 'exponentielle sur R.

Si p € N*, on dira dans cet exercice qu'une suite (M,,),,.y de matrices de .#,(R) converge vers une matrice M € .#,(R)
si elle converge coeflicient par coefficient vers M, c’est-a-dire :

vi,j e [1,p], (My)

; et M; ; désigne les coeflicients respectifs de M,, et M a la ligne 7 et colonne j.

M ;, (L)

iJ n—+00
ou (Mn)l

Cas de R

1. On consideére la fonction f : ¢ — In(1 + t) définie sur | — 1, +o0[.

2/5



MPSI — Lycée Montesquieu 2025-2026

@ _

. Justifi lim == = 1.
a. Justifier que lim =

b. En déduire, pour x € R,
lim nln (1 + f) .
n—+00 n

c. Montrer que pour tout x € R,
X n
lim (1 + 7> = e”.

n—-+aw n

Dans toute la suite, si A € .#,(R), on définit, lorsque la limite existe,

E(A) = lim <Ip + ;A>n. (2)

n—+00

Cas de %4 (R)

On considére une matrice A € 2%4(R), qu’on note

A:<0 _O‘>, ol aeR.
a 0

2. Pour tout n € N*, montrer qu’il existe 3, € R} et 6, €] — 7, 7] tels que
1 cosf, —sinb,,
(IQ + nA> = Bn (Sin 0, cosb, )’

/ a? @
et que ces réels vérifient : 3, =4/1+ — et 6, = arctan —.
n n

3. On fixe n € N*. Montrer par récurrence que pour tout k € N, on a

cos, —sinf,\" _ (cos(kB,) —sin(kb,)
sinf,  cosf, -~ \sin(k6,) cos(kb,) )

. . arctanczx
4.  a. Donner la valeur de arctan 0, puis calculer hr% _
xr— x

1 . - 6, —sind
b. En déduire lim n#,, puis lim €o57n St Un
N+ sinf,  cos@,

n——+0o0

) , au sens défini en (L).

o
S

. Montrer que nIn (1 + %) — 0.
n—+00
b. En déduire li "
n déduire lim B
6. En déduire que E(A) existe!, et donner son expression en fonction de «.

Cas des matrices diagonalisables

7. Cas des matrices diagonales. On considére une matrice diagonale D de .#,(R), on notera

A 0 ...00
D 0
: . 0
0 ... 0 X
Montrer que E(D) existe, et donner son expression en fonction de Aq,. .., \,.

8. Soit A € A,(R). On suppose qu’il existe une matrice P € GL,(R) et une matrice diagonale D € Z,(R) telles que
A = PDP™".

Montrer que E(A) existe et donner son expression en fonction de P, P~! et E(D).

1. Voir (2).
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La fonction f est dérivable en 0 comme composée car ¢t — 1 + t est dérivable en 0 et In est dérivable en 1. On

1 a.
a alors (t) (t) ( )
Titiot—a]/(o)il'

£ — 0, on a par composition de limites

b. Si z € R*, comme £
n—+00
In(1+ £
M — 1, donc ﬁln(l-{—g) — 1, et nln(l-i—f) — x.
" n— +00 T n/ n—+ow n/ n—+w
Si z = 0, le résultat est clairement encore vrai.
c. On déduit de la question précédente par continuité de exp en = que
(1 + E)n _ enlrl(l%»%) _ eﬂ?‘
n n— —+00
cosf, —sinb, 1 = cos@, —sinb, Brncosb, =1
, alors [ . n)=06n| . , donc .
= 1 sinf, cosf, Brsinb, = &

. 1
2. bi (IQ °F EA) = fn <sin0n cos Oy,
2 %
:1+%doncﬁn:MlJr%,carﬁneRj_.

. . N 2
Comme cos? 6, + sin® B, = 1, ceci entraine que

On a cos6,, > 0 donc 6, € ]fg, g[, et
sin 6 «@ «

= M = —, donc 6, = arctan —.
n

il = Br cos 6

Justifions maintenant 1’existence :
2
+i——, ona |z,| =1

si Bn =1+ o? alors ! + Y _ _ 1, et en posant z, = 1
TN TR gz " mPpE P "= Bn ' 'nBa
ﬁ et sinf,, = —ngn, et I’égalité est bien

Par conséquent, il existe 0, €] — 7, 7] tel que z, = e!% . On a alors cos 0, =

vérifiée.

3. Montrons le résultat par récurrence sur k.
cos 6 —sinf,\"

~Sik=0,ona | . " ") =1I,. Comme cos0 =1 et sin0 = 0, le résultat est vrai.
sin 6, cos O,

— Soit k € N. Supposons le résultat vrai pour 'entier k. On a alors

cosf, —sinb, kel . cosf, —sinb, k cosf, —sinb,
sinf,  cosf, - sinf,  cosf, sinf, cosf,
cos(kf,) —sin(kb,)\ (cosf, —sinb,
sin(k6y,) cos(k6y,) sin 6, cos 0,,
_ (cos(kbn) cos b, — sin(kb,)sin6, — cos(kbn)sin b, — sin(k6,) cos b,
N cos(k6y,) sin 6,, + sin(k6,,) cos O, cos(k6y,) cos 0, — sin(k0,,) sin 0,
((k+1)8,) —sin((k+1)6,)
k+1

<cos (

sin(( )0n)  cos((k+ 1)6,

Le résultat est donc bien montré par récurrence.

4. a. On a arctan0 = 0. Comme arctan est dérivable en 0, on a
arctan x arctan x — arctan 0 0 1
= — arctan’(0) = —— = 1.
a8 z—0 z—0 1+0
b. Pour n € N*, on a si o € R*,
«a arctan &

nf, = narctan— = a———> — aq,
n = n— +00
n

—> cosa et

—> 0. Ainsi, par continuité de cos et sin, on a cos(nf,)
n— +00

par composition de limites, car £
" n—s+o0
sin(nf,) — sina. Le résultat est toujours vrai pour a = 0. Par conséquent,
n—+0o0

—sin(nb,) cosa —sin a)

cos, —sinf,\" _ (cos(nbn) N
sinf, cosf, = \sin(nf,) cos(nb,) ) no+w \sina cosa
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5. a. On a ) )
1
nln 1+a— = —n°In 1+a— — 0,
n? n n2 /) notow
car % — Oetn?ln (1 + 0‘—3) — o d’aprés 1b %
n—+00 " n— 00
b. On a
[ a2 non a?
,6,: _ enln\/l+ﬁ _ 621 (1+n2) N eo -1
n—+0o0

d’apres la question précédente, par continuité de la fonction exp.

6. D’aprés ce qui précede, on a

1 " nfcosf, —sinf,\" cosa —sino
Ig-i-fA = P . —> . .
n sinf,  cosf, no+ow \Sina  Cos«
7. On a pour tout n € N*
1+2 0 ... 0o \* [@+3)" 0o .. 0
(Ip+lD> = 0 = : . .
" c 0 z S 0
0 ... 0 1+ 0 o0 (14 2)

car d’aprés le cours, pour tous réels i, ..., jp, on a Diag(p1, ..., up)" = Diag(u?, ..., uy). En utilisant la question

o n ¢ . A . . .
1, on a pour tout i € [1, p], (1 + %) — e, Ceci entraine, puisqu’on a convergence coefficient par coefficient,

n—+o0
M 0 ... 0 M 0 ... 0
1 \" :
(1,,+fD> — | . et ED) = | Y
n n—+0o0 . .
.0 0 0
0 0 e 0 0 e

8. On remarque que I, + 1A = I, + LP7'DP = P7' (I, + L D) P.
Montrons plus généralement par récurrence que pour tout k£ € N, on a
k

k
P2(k) : (Ip + %A) = P—l(l,, + %D) P.

~ Comme P™'P =1, = (I, + %A)O, on obtient que Z2(0) est vraie.
— Soit k € N. On suppose que (k) est vraie. Alors,

1 k+1 1 1 k 1 1 k
(Ip + fA) = (I, + 7A> (Ip + fA) = p (Ip + fD) pp~! (Ip + fD) P
n n n n n

1 k+1
D) P.

= Pil(.[p'i‘g

Ceci acheve la récurrence.
On sait d’aprés la question précédente que E(D) existe car D est diagonale : (I, + +D)" - E(D).
n—+00
Pour tout n € N, on note M,, = (I, + 2D)". D’apres ce qui précéde, (My), Wy E(D);,; pour tous 4, j € [1,p].
Y n—+4+00

Pour tous ,j € [1,p], on a donc :
P p

1 2 &, _ _
(B+34) = 2R 0MIRs 2, XX PIED) P = (PTEDIP),,:
%] k=11=1 k=11=1
Ceci montre que F(A) existe, et E(A) = P~'E(D)P.
a. (n2 In (1 + ‘:‘L—z))n est une sous-suite de (n In (1 + 0‘72))”
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