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DS 4

Corrigé

Exercice 1 – Triplets pythagoriciens

On dit que px, y, zq P pN‹q
3 est un triplet pythagoricien s’il vérifie l’équation :

x2 ` y2 “ z2 (P)
Nous cherchons dans cet exercice à déterminer tous les triplets pythagoriciens.

1. Donner un exemple simple de triplet pythagoricien.
2. On suppose dans un premier temps que px, y, zq P pN‹q

3 est un triplet pythagoricien tel que x et y sont premiers
entre eux.

a. Montrer que si n,m P N‹ et n2 |m2, alors n |m.
On pourra par exemple s’intéresser à vppnq et vppmq, où p est un nombre premier.

b. En déduire que z et y sont premiers entre eux. Que dire de z et x ?
c. Montrer que pour tout k P Z, k2 ” 0 r4s ou k2 ” 1 r4s (on pourra distinguer suivant la congruence de k

modulo 4).
d. En utilisant la question précédente, montrer que x et y n’ont pas la même parité, et préciser la parité de z.

Dans toute la suite de la question 2, on suppose que x est pair et y impair. On note x “ 2a avec a P N‹.
e. Montrer qu’il existe b, c P N‹ tels que

"

b ` c “ z,
b ´ c “ y

et en déduire que a2 “ bc.
f. Montrer que b et c sont premiers entre eux.
g. Montrer qu’il existe u, v P N‹ tels que b “ u2 et c “ v2.
h. En déduire que x “ 2uv, y “ u2 ´ v2 et z “ u2 ` v2.

3. On considère maintenant le cas général : soit px, y, zq P pN‹q3 un triplet pythagoricien. On note d “ x ^ y.
Justifier que d | z, et en se ramenant à la question 2, montrer qu’il existe u, v P N‹ tels que

$

&

%

x “ 2duv
y “ d pu2 ´ v2q

z “ d pu2 ` v2q

(1)

4. Réciproquement, montrer que tout triplet px, y, zq vérifiant (1) avec d, u, v P N‹ et u ą v, est solution de (P).
Conclure, et donner un autre exemple de triplet pythagoricien.

1. Le triplet p3, 4, 5q est solution.
2. a. Soit p un nombre premier. On a n2 | m2 donc vp

`

n2
˘

ď vp
`

m2
˘

. Or vp
`

n2
˘

“ 2vppnq et vp
`

m2
˘

“ 2vppmq.
On a donc vppnq ď vppmq. Cela implique n | m.

b. Soit d un diviseur commun de z et y. Alors d2 |x2 et d2 | z2. On en déduit que d2 | z2 ´ y2, donc d2 |x2. Par la
question précédente, on a d |x. Ainsi, d est un diviseur commun de x et y, et d P t´1, 1u. On en déduit que z
et y sont premiers entre eux. On montre de même manière que x et z sont aussi premiers entre eux.

c. Soit k P Z,
– si k ” 0 r4s, alors k2 ” 0 r4s,
– si k ” 1 r4s, alors k2 ” 1 r4s,
– si k ” 2 r4s, alors k2 ” 4 ” 0 r4s,
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– si k ” 3 r4s, alors k2 ” 9 ” 1 r4s.
Ainsi, dans tous les cas, k2 ” 0 r4s ou k2 ” 1 r4s.

d. Comme x et y sont premiers entre eux, ils ne peuvent être tous deux pairs. Par ailleurs, si on suppose qu’ils sont
tous deux impairs, alors d’après la question précédente, x2 ` y2 ” 2 r4s, donc z2 ” 2 r4s, ce qui est impossible
d’après la question précédente.
Comme x et y n’ont pas même parité, l’un est pair et l’autre impair. Supposons que x est pair et y impair.
Alors on a x2 ” 0 r4s et y2 ” 1 r4s, donc x2 ` y2 ” 1 r4s, et z2 ” 1 r4s. De même si x est impair et y est pair.
Ceci assure que z est impair, toujours d’après la question précédente.

e. On remarque que
"

b ` c “ z
b ´ c “ y

ô

"

2b “ z ` y
2c “ z ´ y

Or y et z sont impairs, donc z`y et z´y sont pairs. Il existe donc bien b, c P Z tels que z`y “ 2b et z´y “ 2c.
On a par ailleurs z2 “ x2 ` y2 ą y2 donc z ą y, et z ´ y ą 0. On a aussi z ` y ą 0. Ceci entraîne que b, c P N‹.
On a ensuite x2 “ z2 ´ y2 “ pz ´ yqpz ` yq “ 4bc, donc 4a2 “ 4bc, puis a2 “ bc.

f. Si d est un diviseur commun à b et c, alors d | b ` c et d | b ´ c, donc d | z et d | y. Comme z et y sont premiers
entre eux, on a alors d P t´1, 1u. Par conséquent, b et c sont premiers entre eux.
On pouvait aussi exploiter une relation de Bézout liant z et y pour en obtenir une liant b et c.

g. On note p1, . . . , pr les facteurs premiers de a. Pour tout i, comme pi | bc, on a pi|b ou pi | c par le lemme
d’Euclide, et on ne peut avoir les deux car b ^ c “ 1. On peut donc séparer les diviseurs premiers en deux
ensembles disjoints : ceux qui divisent b et ceux qui divisent c.
Quitte à réordonner, on peut supposer que p1, . . . , pk divisent b, et pk`1, . . . , pr divisent c. Ce sont les seuls
diviseurs premiers de b et c (car tout autre diviseur premier diviserait aussi a). Par ailleurs, pour tout i, si on
note αi “ vpipaq, on a

vpipa2
q “ vpipbq ` vpipcq, donc 2αi “ vpipbq ` vpipcq.

Ainsi, si i P J1, kK, on a vpipbq “ 2αi, et si i P Jk ` 1, rK, on a vpipcq “ 2αi. Finalement,

b “ p2α1
1 . . . p

2αk
k “ ppα1

1 . . . p
αk
k q

2
, et c “ p

2αk`1

k`1 . . . p2αr
r “

`

p
αk`1

k`1 . . . pαr
r

˘2
.

D’où le résultat en posant u “ pα1
1 . . . p

αk
k et v “ p

αk`1

k`1 . . . pαr
r .

h. On a a2 “ bc “ puvq2, donc comme x2 “ 4a2 “ 4puvq2, on a x “ 2uv. Par ailleurs, y “ b ´ c “ u2 ´ v2 et
z “ b ` c “ u2 ` v2.

3. Comme d |x et d | y, on a d2 |x2 ` y2, et d2 | z2. Par la question 2a, on a alors d | z, et on peut noter z “ dz1 avec
z1 P N‹. Comme d “ x ^ y, il existe par ailleurs x1, y1 tels que x “ dx1, y “ dy1 et x1 ^ y1 “ 1. Ainsi, en divisant
l’équation par d2, on obtient x12 ` y12 “ z12.
D’après la question précédente, comme x1 ^ y1 “ 1, on a l’existence de u, v P N‹ tels que x1 “ 2uv, y1 “ u2 ´ v2 et
z1 “ u2 ` v2. En multipliant par d, ceci donne exactement (1).

4. Simple vérification. L’ensemble des triplets pythagoriciens est l’ensemble constitué des triplets de la forme précédente
ou obtenu en échangeant l’ordre des deux premiers nombres.
Le triplet de la question 1 correspond aux choix d “ 1, u “ 2 et v “ 1. En choisissant d “ 1, u “ 3 et v “ 2, on
obtient le triplet pythagoricien p12, 5, 13q.

Exercice 2 – Exponentielle de matrice
Dans cet exercice, on cherche à donner un sens à l’exponentielle d’une matrice carrée dans certains cas. Pour ce faire,
on s’appuie sur une égalité qui caractérise l’exponentielle sur R.

Si p P N‹, on dira dans cet exercice qu’une suite pMnqnPN de matrices de MppRq converge vers une matrice M P MppRq

si elle converge coefficient par coefficient vers M , c’est-à-dire :

@i, j P J1, pK, pMnqi,j ÝÑ
nÑ`8

Mi,j , (L)

où pMnqi,j et Mi,j désigne les coefficients respectifs de Mn et M à la ligne i et colonne j.

Cas de R

1. On considère la fonction f : t ÞÑ lnp1 ` tq définie sur s ´ 1,`8r.
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a. Justifier que lim
tÑ0

fptq
t “ 1.

b. En déduire, pour x P R,
lim

nÑ`8
n ln

´

1 `
x

n

¯

.

c. Montrer que pour tout x P R,
lim

nÑ`8

´

1 `
x

n

¯n

“ ex.

Dans toute la suite, si A P MppRq, on définit, lorsque la limite existe,

EpAq “ lim
nÑ`8

ˆ

Ip `
1

n
A

˙n

. (2)

Cas de A2pRq

On considère une matrice A P A2pRq, qu’on note

A “

ˆ

0 ´α
α 0

˙

, où α P R.

2. Pour tout n P N‹, montrer qu’il existe βn P R‹
` et θn Ps ´ π, πs tels que

ˆ

I2 `
1

n
A

˙

“ βn

ˆ

cos θn ´ sin θn
sin θn cos θn

˙

,

et que ces réels vérifient : βn “

c

1 `
α2

n2
et θn “ arctan

α

n
.

3. On fixe n P N‹. Montrer par récurrence que pour tout k P N, on a
ˆ

cos θn ´ sin θn
sin θn cos θn

˙k

“

ˆ

cospkθnq ´ sinpkθnq

sinpkθnq cospkθnq

˙

.

4. a. Donner la valeur de arctan 0, puis calculer lim
xÑ0

arctanx

x
.

b. En déduire lim
nÑ`8

nθn, puis lim
nÑ`8

ˆ

cos θn ´ sin θn
sin θn cos θn

˙n

, au sens défini en (L).

5. a. Montrer que n ln
´

1 ` α2

n2

¯

ÝÑ
nÑ`8

0.

b. En déduire lim
nÑ`8

βn
n .

6. En déduire que EpAq existe 1, et donner son expression en fonction de α.

Cas des matrices diagonalisables

7. Cas des matrices diagonales. On considère une matrice diagonale D de MppRq, on notera

D “

¨

˚

˚

˚

˚

˝

λ1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0
0 . . . 0 λp

˛

‹

‹

‹

‹

‚

.

Montrer que EpDq existe, et donner son expression en fonction de λ1, . . . , λp.
8. Soit A P MppRq. On suppose qu’il existe une matrice P P GLppRq et une matrice diagonale D P DppRq telles que

A “ PDP´1.

Montrer que EpAq existe et donner son expression en fonction de P , P´1 et EpDq.

1. Voir (2).
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1. a. La fonction f est dérivable en 0 comme composée car t ÞÑ 1 ` t est dérivable en 0 et ln est dérivable en 1. On
a alors

fptq

t
“

fptq ´ fp0q

t ´ 0
ÝÑ
tÑ0

f 1
p0q “ 1.

b. Si x P R‹, comme x
n

ÝÑ
nÑ`8

0, on a par composition de limites

ln
`

1 ` x
n

˘

x
n

ÝÑ
nÑ`8

1, donc n

x
ln

´

1 `
x

n

¯

ÝÑ
nÑ`8

1, et n ln
´

1 `
x

n

¯

ÝÑ
nÑ`8

x.

Si x “ 0, le résultat est clairement encore vrai.
c. On déduit de la question précédente par continuité de exp en x que

´

1 `
x

n

¯n

“ en lnp1` x
n q ÝÑ

nÑ`8
ex.

2. Si
ˆ

I2 `
1

n
A

˙

“ βn

ˆ

cos θn ´ sin θn
sin θn cos θn

˙

, alors
ˆ

1 ´α
n

α
n

1

˙

“ βn

ˆ

cos θn ´ sin θn
sin θn cos θn

˙

, donc

#

βn cos θn “ 1

βn sin θn “ α
n

Comme cos2 θn ` sin2 βn “ 1, ceci entraîne que β2
n “ 1 `

α2

n2
donc βn “

c

1 `
α2

n2
, car βn P R‹

`.

On a cos θn ą 0 donc θn P
‰

´π
2
, π
2

“

, et

tan θn “
βn sin θn
βn cos θn

“
α

n
, donc θn “ arctan

α

n
.

Justifions maintenant l’existence :

si βn “

c

1 `
α2

n2
, alors 1

β2
n

`
α2

n2β2
n

“ 1, et en posant zn “
1

βn
` i

α

nβn
, on a |zn| “ 1.

Par conséquent, il existe θn Ps ´ π, πs tel que zn “ eiθn . On a alors cos θn “ 1
βn

et sin θn “ α
nβn

, et l’égalité est bien
vérifiée.

3. Montrons le résultat par récurrence sur k.

– Si k “ 0, on a
ˆ

cos θn ´ sin θn
sin θn cos θn

˙k

“ I2. Comme cos 0 “ 1 et sin 0 “ 0, le résultat est vrai.

– Soit k P N. Supposons le résultat vrai pour l’entier k. On a alors
ˆ

cos θn ´ sin θn
sin θn cos θn

˙k`1

“

ˆ

cos θn ´ sin θn
sin θn cos θn

˙kˆ

cos θn ´ sin θn
sin θn cos θn

˙

“

ˆ

cospkθnq ´ sinpkθnq

sinpkθnq cospkθnq

˙ ˆ

cos θn ´ sin θn
sin θn cos θn

˙

“

ˆ

cospkθnq cos θn ´ sinpkθnq sin θn ´ cospkθnq sin θn ´ sinpkθnq cos θn
cospkθnq sin θn ` sinpkθnq cos θn cospkθnq cos θn ´ sinpkθnq sin θn

˙

“

ˆ

cosppk ` 1qθnq ´ sinppk ` 1qθnq

sinppk ` 1qθnq cosppk ` 1qθn

˙

Le résultat est donc bien montré par récurrence.
4. a. On a arctan 0 “ 0. Comme arctan est dérivable en 0, on a

arctan x

x
“

arctan x ´ arctan 0

x ´ 0
ÝÑ
xÑ0

arctan1
p0q “

1

1 ` 02
“ 1.

b. Pour n P N‹, on a si α P R‹,

nθn “ n arctan
α

n
“ α

arctan α
n

α
n

ÝÑ
nÑ`8

α,

par composition de limites, car α
n

ÝÑ
nÑ`8

0. Ainsi, par continuité de cos et sin, on a cospnθnq ÝÑ
nÑ`8

cosα et
sinpnθnq ÝÑ

nÑ`8
sinα. Le résultat est toujours vrai pour α “ 0. Par conséquent,

ˆ

cos θn ´ sin θn
sin θn cos θn

˙n

“

ˆ

cospnθnq ´ sinpnθnq

sinpnθnq cospnθnq

˙

ÝÑ
nÑ`8

ˆ

cosα ´ sinα
sinα cosα

˙

.
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5. a. On a
n ln

ˆ

1 `
α2

n2

˙

“
1

n
n2 ln

ˆ

1 `
α2

n2

˙

ÝÑ
nÑ`8

0,

car 1
n

ÝÑ
nÑ`8

0 et n2 ln
´

1 ` α2

n2

¯

ÝÑ
nÑ`8

α2 d’après 1b a.

b. On a

βn
n “ e

n ln

c

1` α2

n2
“ e

n
2

ln

ˆ

1` α2

n2

˙

ÝÑ
nÑ`8

e0 “ 1

d’après la question précédente, par continuité de la fonction exp.
6. D’après ce qui précède, on a

ˆ

I2 `
1

n
A

˙n

“ βn
n

ˆ

cos θn ´ sin θn
sin θn cos θn

˙n

ÝÑ
nÑ`8

ˆ

cosα ´ sinα
sinα cosα

˙

.

7. On a pour tout n P N‹

ˆ

Ip `
1

n
D

˙n

“

¨

˚

˚

˚

˚

˚

˝

1 ` λ1
n

0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 1 `
λp

n

˛

‹

‹

‹

‹

‹

‚

n

“

¨

˚

˚

˚

˚

˚

˚

˝

`

1 ` λ1
n

˘n
0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0
´

1 `
λp

n

¯n

˛

‹

‹

‹

‹

‹

‹

‚

car d’après le cours, pour tous réels µ1, . . . , µp, on a Diagpµ1, . . . , µpqn “ Diagpµn
1 , . . . , µ

n
p q. En utilisant la question

1, on a pour tout i P J1, pK, `

1 ` λ1
n

˘n
ÝÑ

nÑ`8
eλ

i

. Ceci entraîne, puisqu’on a convergence coefficient par coefficient,

ˆ

Ip `
1

n
D

˙n

ÝÑ
nÑ`8

¨

˚

˚

˚

˚

˚

˝

eλ1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 eλp

˛

‹

‹

‹

‹

‹

‚

, et EpDq “

¨

˚

˚

˚

˚

˚

˝

eλ1 0 . . . 0

0
. . . . . .

...
...

. . . . . . 0

0 . . . 0 eλp

˛

‹

‹

‹

‹

‹

‚

.

8. On remarque que Ip ` 1
n
A “ Ip ` 1

n
P´1DP “ P´1

`

Ip ` 1
n
D

˘

P .
Montrons plus généralement par récurrence que pour tout k P N, on a

Ppkq :

ˆ

Ip `
1

n
A

˙k

“ P´1

ˆ

Ip `
1

n
D

˙k

P.

– Comme P´1P “ Ip “
`

Ip ` 1
n
A

˘0, on obtient que Pp0q est vraie.
– Soit k P N. On suppose que Ppkq est vraie. Alors,

ˆ

Ip `
1

n
A

˙k`1

“

ˆ

Ip `
1

n
A

˙ˆ

Ip `
1

n
A

˙k

“ P´1

ˆ

Ip `
1

n
D

˙

PP´1

ˆ

Ip `
1

n
D

˙k

P

“ P´1

ˆ

Ip `
1

n
D

˙k`1

P.

Ceci achève la récurrence.
On sait d’après la question précédente que EpDq existe car D est diagonale :

`

Ip ` 1
n
D

˘n
ÝÑ

nÑ`8
EpDq.

Pour tout n P N, on note Mn “
`

Ip ` 1
n
D

˘n. D’après ce qui précède, pMnqi,j ÝÑ
nÑ`8

EpDqi,j pour tous i, j P J1, pK.
Pour tous i, j P J1, pK, on a donc :

ˆ

Ip `
1

n
A

˙

i,j

“

p
ÿ

k“1

p
ÿ

l“1

pP´1
qi,kpMnqk,lPl,j ÝÑ

nÑ`8

p
ÿ

k“1

p
ÿ

l“1

pP´1
qi,kEpDqk,lPl,j “ pP´1EpDqP qi,j .

Ceci montre que EpAq existe, et EpAq “ P´1EpDqP .

a.
´

n2 ln
´

1 ` α2

n2

¯¯

n
est une sous-suite de

´

n ln
´

1 ` α2

n

¯¯

n
.
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