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DS 5

Corrigé

Exercice 1 – Un sous-anneau de Q
On considère l’ensemble

A “

"

n

2k ` 1
, n, k P Z

*

.

1. Montrer que A est un sous-anneau de pQ,`,ˆq.
2. a. Soient n, k P Z avec n ­“ 0. Montrer :

2k ` 1

n
P A ñ n est impair.

b. En déduire que x P A est inversible dans A si et seulement s’il est de la forme

x “
n

2k ` 1
, avec k P Z, et n entier impair.

1. Montrons que A est un sous-anneau de Q.
– En choisissant n “ 1 et k “ 0, on constate qu’on a 1 “ n

2k`1
P A.

– On considère deux éléments x, y P A, que l’on peut donc noter x “ n
2k`1

et y “ m
2l`1

, avec n,m, k, l P Z. On a

x ´ y “
n

2k ` 1
´

m

2l ` 1
“

np2l ` 1q ` mp2k ` 1q

p2k ` 1qp2l ` 1q
P A, et xy “

nm

p2k ` 1qp2l ` 1q
P A,

car p2k ` 1qp2l ` 1q est impair : p2k ` 1qp2l ` 1q ” 1 r2s. Ainsi, A est stable par différence et par produit.
2. a. Supposons que 2k`1

n
P A, il existe alors m, l P Z tels que

2k ` 1

n
“

m

2l ` 1
, donc nm “ p2k ` 1qp2l ` 1q.

On en déduit que nm est impair. On en déduit que n est impair (si n était pair, nm le serait également).
b. Soit x P A, noté x “ n

2k`1
avec n, k P Z.

Si x est inversible dans A, il existe y P A tel que xy “ 1, c’est-à-dire y “ 1
x

. Ainsi, on a 1
x

“ 2k`1
n

P A,
donc n est impair par la question précédente.
Réciproquement, si n est impair, alors n ­“ 0, et 2k`1

n
P A. Comme x 2k`1

n
“ 1, x est inversible dans A.

Exercice 2 – Convolution de suites
Dans cet exercice, on note E “ RN l’ensemble des suites réelles. On rappelle que E est muni de l’addition des suites :
si u, v P E, la suite u ` v est définie par :

@n P N, pu ` vqn “ un ` vn.

On munit par ailleurs E de la loi interne notée ‹ définie de la manière suivante : si u, v P E, la suite u ‹ v P E est
définie par

@n P N, pu ‹ vqn “
n
ř

k“0

ukvn´k.

1. Rappeler la définition de la commutativité pour la loi ‹, et montrer que ‹ est commutative.
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2. On considère la suite e définie par :

@n P N, en “

"

1 si n “ 0,
0 si n ­“ 0.

Pour u P E et n P N, calculer pe ‹ uqn. Qu’en déduit-on ?
3. Montrer que ‹ est distributive par rapport à `.
4. Rappeler la définition de l’associativité pour la la loi ‹, et montrer que ‹ est associative.
5. Quelle est la structure algébrique de pE,`, ‹q ? Justifier.
6. Quels sont les inversibles de E ?

1. La loi ‹ est commutative si et seulement si pour toutes suites u, v P E, on a u ‹ v “ v ‹ u.
Soient u, v P E. Pour tout n P N, on a

pu ‹ vqn “

n
ÿ

k“0

ukvn´k
k1“n´k

“

n
ÿ

k1“0

un´k1vk1 “ pv ‹ uqn.

Ainsi, u ‹ v “ v ‹ u.
2. Soient u P E. Pour tout n P N, on a

pe ‹ uqn “

n
ÿ

k“0

ekun´k “ e0un `

n
ÿ

k“1

ek
loomoon

“0

un´k “ un.

On a donc e ‹ u “ u, et, par commutativité, u ‹ e “ u. Par conséquent, e est élément neutre pour la loi ‹.
3. Soient u, v, w P E. Pour tout n P N, on a

pu ‹ pv ` wqqn “

n
ÿ

k“0

ukpvn´k ` wn´kq “

n
ÿ

k“0

ukvn´k `

n
ÿ

k“0

ukwn´k “ pu ‹ vqn ` pv ‹ uqn “ pu ‹ v ` u ‹ wqn.

Ainsi, u ‹ pv ` wq “ u ‹ v ` u ‹ w. La distributivité à droite en découle par commutativité.
4. La loi ‹ est associative si et seulement si pour toutes suites u, v, w P E, on a pu ‹ vq ‹ w “ u ‹ pv ‹ wq.

Soient u, v, w P E. Pour tout n P N, on a

ppu ‹ vq ‹ wqn “

n
ÿ

k“0

pu ‹ vqkwn´k “

n
ÿ

k“0

˜

k
ÿ

l“0

ulvk´l

¸

wn´k “

n
ÿ

k“0

k
ÿ

l“0

ulvk´lwn´k.

Par ailleurs,

pu ‹ pv ‹ wqqn “

n
ÿ

k“0

ukpv ‹ wqn´k “

n
ÿ

k“0

uk

n´k
ÿ

l“0

vlwn´k´l
l1“k`l

“

n
ÿ

k“0

uk

n
ÿ

l1“k

vl1´kwn´l1 “

n
ÿ

l1“0

l1
ÿ

k“0

ukvl1´kwn´l1 .

en faisant une interversion dans la dernière somme double triangulaire. On observe que, les variables étant muettes,
les deux sommes doubles obtenues sont les mêmes, c’est-à-dire ppu ‹ vq ‹ wqn “ pu ‹ pv ‹ wqqn.

5. D’après le cours, pE,`q est un groupe abélien : il s’agit du groupe pF pN,Rq,`q, l’élément neutre étant la suite nulle,
et ´u l’inverse de u P E pour la loi `. Comme on a vu que ‹ est associative, commutative, distributive par rapport
à ` et a un élément neutre, on a donc montré que pE,`, ‹q est un anneau commutatif.

6. Si u est inversible dans E, alors il existe v P E telle que u ‹ v “ e.
– En particulier, pu ‹ vq0 “ u0v0 “ 1, donc u0 ­“ 0, et v0 “ 1

u0
.

– Ensuite, pour tout n P N, on a pu‹vqn “ u0vn `u1vn´1 ` . . .`unv0 “ 0. Ainsi, vn “ ´ 1
u0

pu1vn´1 ` . . .`unv0q.
Réciproquement, supposons que u0 ­“ 0, et considérons la suite v définie par récurrence par v0 “ 1

u0
et pour tout

n P N‹, vn “ ´ 1
u0

pu1vn´1 ` . . . ` unv0q, et montrons que u ‹ v “ e.
– On a u0v0 “ 1, donc pu ‹ vq0 “ e0 “ 1.
– Pour tout n P N‹, on a pu ‹ vqn “ u0vn ` u1vn´1 ` . . . unv0 “ u0vn ´ u0vn “ 0 “ en.

Finalement, on a bien u ‹ v “ e, donc on a aussi v ‹ u “ e, et u est inversible dans E.
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Exercice 3 – Inversibles de Zr
?
2s

On considère
A “ ta ` b

?
2, a, b P Zu.

1. Montrer que A est un sous-anneau de pR,`,ˆq.
2. a. Montrer que pour tout x P A, il existe un unique couple pa, bq P Z2 tel que x “ a ` b

?
2.

Dans toute la suite, pour tout x P A tel que x “ a ` b
?
2 avec a, b P Z, on note

x̄ “ a ´ b
?
2, et Npxq “ xx̄.

b. Pour tout x P A, exprimer Npxq en fonction de a, b P Z tels que x “ a ` b
?
2, et justifier que Npxq P Z.

c. Montrer que pour tous x, y P A, Npxyq “ NpxqNpyq.
3. Montrer que x P A est inversible dans A si et seulement si Npxq P t´1, 1u.

On note : ˛ Aˆ l’ensemble des inversibles de A,
˛ Aˆ

1 “ AˆXs1,`8r l’ensemble des inversibles x de A tels que x ą 1.

4. a. Montrer que si x P Aˆ
1 , alors ´1 ď x̄ ď 1.

b. En déduire que α “ 1 `
?
2 est le plus petit élément de Aˆ

1 .
5. Montrer que si x P Aˆ

1 , il existe un entier n P N‹ tel que αn ď x ă αn`1.
6. En déduire que Aˆ

1 “ tαn, n P N‹u.
7. Déterminer l’ensemble Aˆ.

1. Montrons que A est un sous-anneau de pR,`,ˆq.
– En choisissant a “ 1 et b “ 0, on constate que 1 “ a ` b

?
2 P A.

– Si x, y P A, on peut écrire x “ a ` b
?
2 et y “ a1 ` b1

?
2, avec a, b, a1, b1 P Z. On a alors

x ´ y “ a ´ a1
loomoon

PZ

`pb ´ b1
loomoon

PZ

q
?
2 P A, et ab “ aa1

` 2bb1
loooomoooon

PZ

`pab1
` a1b

looomooon

PZ

q
?
2 P A.

Ainsi, A est stable par différence et par produit.
2. a. Supposons que x P A s’écrive x “ a` b

?
2 “ a1 ` b1

?
2 avec a, a1, b, b1 P Z. On a alors a´a1 “ pb1 ´ bq

?
2. Ainsi,

si b ­“ b1, on a
?
2 “ a´a1

b1´b
P Q, et il y a contradiction. On a alors b “ b1, puis a “ a1, d’où l’unicité.

b. Pour x P A, si x “ a ` b
?
2 avec a, b P Z, alors on a Npxq “ pa ` b

?
2qpa ´ b

?
2q “ a2 ´ 2b2 P Z.

c. On considère x, y P A, qu’on écrit x “ a ` b
?
2 et y “ a1 ` b1

?
2, avec a, a1, b, b1 P Z. On a alors

NpxqNpyq “ pa2
´ 2b2qpa12

´ 2b12
q “ paa1

q
2

´ 2pab1
q
2

´ 21a1bq
2

` 4pbb1
q
2.

Donc Npxyq “ N
`

aa1 ` 2bb1 ` pab1 ` a1bq
?
2

˘

“ paa1 ` 2bb1q2 ´ 2pab1 ` a1bq2

“ paa1q2 ` 4aa1bb1 ` 4pbb1q2 ´ 2pab1q2 ´ 4aa1bb1 ´ 2pa1bq2

“ NpxqNpyq.

3. Si x P A est inversible, alors il existe y P A tel que xy “ 1, donc NpxqNpyq “ Npxyq “ Np1q “ 1. Par conséquent,
Npxq est inversible dans Z, et Npxq P t´1, 1u.
Réciproquement, supposons Npxq P t´1, 1u. Si Npxq “ 1, alors xx̄ “ 1, et comme x̄ P A, x est inversible d’inverse
x̄. De même, si Npxq “ ´1, alors xx̄ “ ´1, donc xp´x̄q “ 1, et x inversible dans A, d’inverse ´x̄.

4. a. Si x P Aˆ
1 , on a |xx̄| “ |Npxq| “ 1, donc |x̄| “ 1

|x|
ă 1, du fait que |x| “ x ą 1. On a bien ´1 ă x̄ ă 1.

b. Déjà, 1 `
?
2 ą 1 et Np1 `

?
2q “ ´1 donc 1 `

?
2 P Aˆ

1 .
Ensuite, on considère x P Aˆ

1 et on note x “ a ` b
?
2, avec a, b P Z, de sorte que x̄ “ a ´ b

?
2.

– Comme x ą 1 et x̄ ą ´1, on a
"

a ` b
?
2 ą 1

a ´ b
?
2 ą ´1

En additionnant, on trouve 2a ą 0, donc a ą 0.
– Comme a ´ b

?
2 ă 1, on a ´a ` b

?
2 ą ´1, donc

"

a ` b
?
2 ą 1

´a ` b
?
2 ą ´1

3/7



MPSI – Lycée Montesquieu 2025-2026

En additionnant, on trouve 2b
?
2 ą 0, donc b ą 0.

Comme a, b P Z, on en déduit que a ě 1 et b ě 1, ce qui donne x “ a ` b
?
2 ě 1 `

?
2. On a donc bien montré

que 1 `
?
2 est le plus petit élément de Aˆ

1 .
5. On remarque que αn ď x ă αn`1 se récrit lnpαnq ď lnx ă lnpαn`1q par stricte croissance de ln, ou encore

n lnα ď lnx ă pn ` 1q lnα. Comme α ą 1, on a lnα ą 0, donc l’inégalité se récrit encore :

n ď
lnx

lnα
ă n ` 1, donc en posant n “

Z

lnx

lnα

^

, on a bien l’inégalité.

Par ailleurs, n ě 1 car x ě α, donc lnx ě lnα.
On peut aussi remarquer que αn ÝÑ

nÑ`8
`8, il existe n P N tel que @k ą n, αk ą x, donc il existe N tel que

@k ą N, αk ą x.
Ainsi, l’ensemble N “ tk P N, αk ď xu est borné par N et non vide car il contient 0, donc on peut poser n “ maxN ,
ce sorte que αn ď x ă αn`1.

6. Tout d’abord, comme pAˆ,ˆq est un groupe, on a αn P Aˆ pour tout n P N. Par ailleurs, pour tout n P N‹, on a
αn ě α ą 1, donc αn P Aˆ

1 . On a montré tαn, n P N‹u Ă Aˆ
1 .

Si x P Aˆ
1 , on considère n P N tel que αn ď x ă αn`1, dont l’existence est assurée par la question précédente. Par

conséquent, on a
1 ď xα´n

ă α.

Comme x et α´n sont inversibles, xα´n l’est aussi. Comme xαn ă α “ minAˆ
1 , on en déduit alors que xα´n R Aˆ

1 ,
donc xα´n ď 1. Finalement, xα´n “ 1, ce qui donne x “ αn, puis x P tαn, n P N‹u, d’où l’autre inclusion.

7. On note I “ t˘αn, n P Zu. Comme Aˆ est un groupe, les nombres de la forme αn ou ´αn avec n P Z sont inversibles
dans A, donc I Ă Aˆ.
Réciproquement, si x P Aˆ,

– si x Ps1,`8r, on a vu que x P I, si x “ 1, c’est bien sûr le cas également,
– si x Ps0, 1r, alors 1

x
Ps1,`8, donc on peut écrire 1

x
“ αn avec n P N‹, donc x “ α´n P I,

– si x Ps´8, 0r, alors ´x Ps0,`8r, donc on vient de voir qu’on peut écrire x “ αn avec n P Z, donc x “ ´αn P I.

Exercice 4 – Interpolation de Lagrange et polynômes de Hilbert
À l’exception de la question 4, les deux parties sont indépendantes.

Partie I – Interpolation de Lagrange

Dans cette partie, K désigne R ou C.
On considère n P N, x0, x1, . . . , xn P K deux à deux distincts, et y0, y1, . . . , yn P K. On cherche à montrer qu’il existe
un unique polynôme P P KnrXs tel que

@j P J0, nK, P pxjq “ yj . (1)

1. Unicité. On suppose que P,Q P KnrXs sont deux polynômes tels que

@j P J0, nK, P pxjq “ Qpxjq “ yj .

a. On note R “ P ´ Q. Montrer que R P KnrXs.
b. Conclure à l’unicité.

2. Existence. Pour tout i P J0, nK, on pose

Li “

n
ź

k“0
k ­“i

X ´ xk

xi ´ xk
.

À titre d’exemple, si n “ 2, on a défini L0 “
pX´x1qpX´x2q

px0´x1qpx0´x2q
, L1 “

pX´x0qpX´x2q

px1´x0qpx1´x2q
, L2 “

pX´x0qpX´x1q

px2´x0qpx2´x1q
.

a. Justifier que pour tout i P J0, nK, le polynôme Li est de degré n.

b. Pour tout i P J0, nK, calculer Lipxiq. Pour j P J0, nK tel que i ­“ j, calculer Lipxjq.

c. En déduire que si P “
n
ř

i“0

yiLi, alors P vérifie (1).
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3. Montrer que pour tout polynôme P P KnrXs,

P “

n
ÿ

i“0

P pxiqLi

Partie II – Polynômes stabilisant Q et Z

On s’intéresse dans cette partie aux polynômes P P CrXs stabilisant un ensemble K Ă C, c’est-à-dire que

@x P K, P pxq P K.

On note QrXs l’ensemble des polynômes à coefficients dans Q, et ZrXs l’ensemble des polynômes à coefficients dans
Z.

4. Cas K “ Q. Montrer que pour tout P P CrXs,

p@x P Q, P pxq P Qq ô P P QrXs.

On pourra appliquer la question 3 à un polynôme P P CnrXs en choisissant x0 “ 0, x1 “ 1, . . . , xn “ n.
5. Cas K “ Z. Pour tout k P N‹, on note

Hk “
1

k!

k´1
ź

i“0

pX ´ iq “
XpX ´ 1q . . . pX ´ k ` 1q

k!
.

On note par ailleurs H0 “ 1.

a. Montrer que pour tout n P Z,

Hkpnq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

0 si 0 ď n ď k ´ 1
ˆ

n

k

˙

si n ě k

p´1qk
ˆ

k ´ n ´ 1

´n ´ 1

˙

si n ă 0

b. Soit k P N. Montrer que pour tout n ě k,
n

ÿ

i“k

ˆ

i

k

˙

“

ˆ

n ` 1

k ` 1

˙

.

On pourra par exemple raisonner par récurrence.
c. En déduire que pour tous k, n P N,

n
ÿ

i“0

Hkpiq “ Hk`1pn ` 1q.

d. Soient P P CrXs un polynôme non constant, et

Q “ P pX ` 1q ´ P pXq.

Exprimer degP en fonction de degQ.
e. Pour tout k P N‹, exprimer P pkq ´ P p0q en fonction de Qp0q, . . . , Qpk ´ 1q.
f. Montrer que les polynômes P P CrXs tels que @x P Z, P pxq P Z sont exactement les polynômes de la forme

P “

n
ÿ

i“0

aiHi

où a0, . . . , an P Z.
On pourra raisonner par récurrence sur le degré de P .

1. a. On a degpP ´ Qq ď maxpdegP, degQq ď n, car degP ď n et degQ ď n. Ainsi, P ´ Q P KnrXs.
b. Comme P pxiq “ Qpxiq pour tout i P J0, nK, le polynômes R “ P ´ Q a pour racines x0, . . . , xn qui sont deux

à deux distincts. Ainsi, R est un polynôme de degré au plus n qui a n ` 1 racines, il est donc nul. On a bien
montré que P “ Q, d’où l’unicité.
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2. a. Le polynôme Li est un produit de n polynômes de degré 1, il est donc de degré n.
b. On a Lipxiq “ 1 et Lipxjq “ 0.
c. Soit j P J0, nK. On a

P pxjq “

n
ÿ

i“0

yiLipxjq “ yjLjpxjq “ yj .

3. Le polynôme Q “
řn

i“0 P pxiqLi appartient à KnrXs comme somme de polynômes de KnrXs, et vérifie Qpxjq “ P pxjq

pour tout j P J0, nK. Comme nous avons montré l’unicité d’un tel polynôme, ceci entraîne que P “ Q.
4. Soit P P CrXs tel que pour tout x P Q, P pxq P Q. Si P est nul, on a P P QrXs. Sinon, on note n “ degP , et on

choisit xj “ j pour tout j P J0, nK, on a

P “

n
ÿ

i“0

P piqLi, et pour tout i P J0, nK, Li “

n
ź

k“0
k ­“i

X ´ k

i ´ k
P QrXs, donc P P QrXs.

Réciproquement, si P “
n
ř

k“0

akX
k P QrXs, alors pour tout x P Q, on a P pxq “

n
ř

k“0

akx
k P Q.

5. a. Si 0 ď n ď k ´ 1, alors n est racine de XpX ´ 1q . . . pX ´ nq . . . pX ´ k ` 1q, donc Hkpnq “ 0.

Si n ě k, Hkpnq “
npn ´ 1q . . . pn ´ k ` 1q

k!
“

n!

k!pn ´ kq!
“

˜

n

k

¸

.

Si n ă 0, on pose m “ ´n ą 0, on a alors

Hkpnq “ Hkp´mq “
1

k!

k´1
ź

i“0

p´m ´ iq “
p´1qk

k!

k´1
ź

i“0

pm ` iq “ p´1q
k pm ` k ´ 1q . . .m

k!
“ p´1q

k pm ´ kq!

k!pm ´ 1q!
.

Ainsi, Hkpnq “ p´1qk
`

m`k´1
m´1

˘

“ p´1qk
`

k´n´1
´n´1

˘

.

b. On fixe k P N, et on raisonne par récurrence sur n.

– Si n “ k, on a
n
ř

i“k

`

i
k

˘

“
`

k
k

˘

“
`

k`1
k`1

˘

“
`

n`1
k`1

˘

.

– Soit n ě k. On suppose que
n
ř

i“k

`

i
k

˘

“
`

n`1
k`1

˘

, on a alors

n`1
ÿ

i“k

˜

i

k

¸

“

n
ÿ

i“k

˜

i

k

¸

`

˜

n ` 1

k

¸

“

˜

n ` 1

k ` 1

¸

`

˜

n ` 1

k

¸

“

˜

n ` 2

k ` 1

¸

,

par la relation de Pascal. Ceci achève la récurrence.
c. Soient k, n P N.

– Si n ă k, alors pour tout i ď n, on a i ă k, donc Hkpiq “ 0. Comme
`

n`1
k`1

˘

“ 0, l’égalité est vraie.

– Si n ě k, on sait que pour tout i P J0, nK, Hkpiq “
`

i
k

˘

si i ě k, et Hkpiq “ 0 sinon

n
ÿ

i“0

Hkpiq “

n
ÿ

i“k

Hkpiq “

n
ÿ

i“k

˜

i

k

¸

“

˜

n ` 1

k ` 1

¸

“ Hkpn ` 1q

d’après les questions précédentes.
d. Soit P P CrXs avec n “ degP ě 1. On peut alors écrire P “ anX

n `an´1X
n´1 ` pP , avec pP P Cn´2rXs. Ainsi,

Q “ anpX ` 1q
n

` an´1pX ` 1q
n´1

` pP pX ` 1q ´ anX
n

´ an´1X
n´1

´ pP pXq

“ anX
n

` nanX
n´1

` an´1X
n´1

` ´anX
n

´ an´1X
n´1

` pQpXq

où pQ est un polynôme de degré au plus n ´ 2, d’après la formule du binôme de Newton, et car on a
deg pP pX ` 1q ´ pP pxq ď maxpdeg pP pX ` 1q, pP q ď n ` 2. Ainsi, comme Q “ nanX

n´1 ` pQ et nan ­“ 0, on
a degQ “ n ´ 1 “ degP ´ 1.

e. Par télescopage, on a pour k P N‹,

P pkq ´ P p0q “

k´1
ÿ

j“0

P pj ` 1q ´ P pjq “

k´1
ÿ

j“0

Qpjq.
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f. Déjà, on sait par la question 5a que pour tout i P N, on a : @m P Z, Hipmq P Z. Par conséquent, si P est de la
forme

řn
i“0 aiHi, on a aussi @m P Z, P pmq P Z.

Réciproquement, si P de degré n P N vérifie : @m P Z, P pmq P Z, on montre par récurrence sur n que P est de
la forme ci-dessus.

– Si n “ 0, le polynôme P est constant, donc P “ a0 P Z, et P “ a0H0.
– Soit n P N. On suppose que tout polynôme Q de degré n tel que @m P Z, Qpmq P Z s’écrit

řn
i“0 aiHi avec

a0, . . . , an P Z, et on considère un polynôme P de degré n ` 1 tel que @m P Z, P pmq P Z.
On a vu qu’alors Q “ P pX ` 1q ´ P pXq P CnrXs, et, par hypothèse de récurrence, il existe a0, . . . , an P Z
tels que Q “

řn
i“0 aiHi. En utilisant la question précédente, on a alors pour tout k P N‹,

P pkq ´ P p0q “

k´1
ÿ

j“0

Qpjq “

k´1
ÿ

j“0

n
ÿ

i“0

aiHipjq “

n
ÿ

i“0

ai

k´1
ÿ

j“0

Hipjq “

n
ÿ

i“0

aiHi`1pkq,

d’après 5c. Ainsi, pour tout k P N‹, P pkq “ P p0qH0 `
n`1
ř

i“1

ai´1Hi, et le polynôme P ´ P p0qH0 `
n`1
ř

i“1

ai´1Hi

a une infinité de racines, donc il est nul. Ainsi,

P “ P p0qH0 `

n`1
ÿ

i“1

ai´1Hi, ce qui conclut.
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