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DS 5

Corrigé

Exercice 1 — Un sous-anneau de )

On considere ’ensemble

n
A= {2]{;4»17 n,kEZ}.

1. Montrer que A est un sous-anneau de (Q, +, x).
2.  a. Soient n,k € Z avec n = 0. Montrer :
2k +1

n
b. En déduire que = € A est inversible dans A si et seulement s’il est de la forme

€ A = n est impair.

T = avec k € Z, et n entier impair.

n
2k +1°

1. Montrons que A est un sous-anneau de Q.
— En choisissant n = 1 et k = 0, on constate quon a 1 = 5% € A.

BEBY 212 ) _ n — m
— On considere deux éléments z,y € A, que l'on peut donc noter x = 5% et y = 5775, avec n,m, k,l € Z. On a

g M _n(2l+1)+m(2k+1)GA o e nm cA
Y= 2% +1 20+1 ~ (k+D@+1D) ’ Y@k @i+ -
car (2k + 1)(20 + 1) est impair : (2k + 1)(21 + 1) = 1[2]. Ainsi, A est stable par différence et par produit.
2. a. Supposons que %TH € A, il existe alors m,l € Z tels que
2k+1  m

donc nm = (2k + 1)(21 + 1).

n  2+1
On en déduit que nm est impair. On en déduit que n est impair (si n était pair, nm le serait également).
b. Soit x € A, noté x = ;%5 avec n, k € Z.

Si x est inversible dans A, il existe y € A tel que zy = 1, c’est-a-dire y = % Ainsi, on a % = 2'“71—“ €A,
donc n est impair par la question précédente.
2k+1

n

Réciproquement, si n est impair, alors n = 0, et % € A. Comme x = 1, x est inversible dans A.

Exercice 2 — Convolution de suites

Dans cet exercice, on note E = RY I’ensemble des suites réelles. On rappelle que E est muni de I’addition des suites :
si u,v € E, la suite u + v est définie par :

VneN, (u+v), =up + vp.
On munit par ailleurs E de la loi interne notée * définie de la maniére suivante : si u,v € E, la suite u x v € F est

définie par
n

VneN, (uxv), = Y, upUp_k.
k=0

1. Rappeler la définition de la commutativité pour la loi *, et montrer que * est commutative.
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2. On considere la suite e définie par :

[ N N

1 sin=0,

vnel, e”_{ 0 sin=0.

Pour u € FE et n € N, calculer (e * u),. Quen déduit-on ?
. Montrer que * est distributive par rapport a +.
. Rappeler la définition de ’associativité pour la la loi %, et montrer que * est associative.
. Quelle est la structure algébrique de (E, +, ) ? Justifier.

. Quels sont les inversibles de E 7

1. La loi *» est commutative si et seulement si pour toutes suites u,v € E, on a u * v = v * u.

. Soient u € E. Pour tout n € N, on a

. Soient u,v,w € E. Pour tout n € N, on a

. La loi * est associative si et seulement si pour toutes suites u,v,w € F, on a (u*v) *xw = u * (v * w).

. D’apres le cours, (E, +) est un groupe abélien : il s’agit du groupe (% (N, R), +), I’élément neutre étant la suite nulle,

. Si u est inversible dans E, alors il existe v € E telle que uxv = e.

Soient u,v € E. Pour tout n € N, on a

(u*v)n

n n
k'=n—k
Z UpUn—k = 2 Up—p/ Vgt = (V% U)p.
k=0 k'=0

Ainsi, uxv = v x u.

n n
(e*xu), = Z Crlln_k = €oUpn + Z ek Un—k = Un.
k=0 k=1

On a donc e x u = u, et, par commutativité, u * e = u. Par conséquent, e est élément neutre pour la loi *.

n

n n
(ux (vt w)n = Z Uk (Un—k + Wn—k) = Z UkVn—k + Z UpWn—t = (UxV)n + (V*U)p = (WrV + U*W)y.
k=0 k=0 k=0

Ainsi, u* (v 4+ w) = ux v + u * w. La distributivité & droite en découle par commutativité.

Soient u,v,w € E. Pour tout n € N, on a

n n k n k
(uxv)*w), = Z(U*U)kwnfk = Z <Z uzmz) Wn—k = Z Zulkalwnfkv
=0 k=01=0

k=0 k=0
Par ailleurs,

n—=k n 4
0

n n n n
U=kt
(ux (V*w))n = Z Up(V* W)p—p = Z U Z VWn—f—l = Z Uk Z VY g Wy = Z Z URVY — Wy -
k=0 k=0 = k=0 U=k

1'=0k=0

en faisant une interversion dans la derniére somme double triangulaire. On observe que, les variables étant muettes,
les deux sommes doubles obtenues sont les mémes, c¢’est-a-dire ((u * v) * w)p = (u* (V* W))n.

et —u l'inverse de u € E pour la loi +. Comme on a vu que * est associative, commutative, distributive par rapport
a + et a un élément neutre, on a donc montré que (E, +, *) est un anneau commutatif.

— En particulier, (u * v)o = uovg = 1, donc ug = 0, et vo = leo

— Ensuite, pour tout n € N, on a (u*v)n = uoUn +U1Vn—1+...+upvo = 0. Ainsi, v, = —%(ulvnq +...+uUnvo).
Réciproquement, supposons que uo = 0, et considérons la suite v définie par récurrence par vo = % et pour tout
neN*, v, = —%(ulvnq + ...+ upvo), et montrons que u * v = e.

— On a uovg = 1, donc (u*v)o = eg = 1.

— Pour tout n € N*, on a (u *v), = uoUn + U1VUn—1 + ... UnVo = UoUn, — UoUn = 0 = €y

Finalement, on a bien u * v = e, donc on a aussi v * u = e, et u est inversible dans F.
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Exercice 3 — Inversibles de Z[+/2]

On considere
A={a+bV2, a,beZ}.
1. Montrer que A est un sous-anneau de (R, +, x).
2. a. Montrer que pour tout = € A, il existe un unique couple (a,b) € Z2 tel que x = a + b\/2.

Dans toute la suite, pour tout z € A tel que x = a + by/2 avec a,b € Z, on note
T=a—bv/2, et N(z)=2z.
b. Pour tout x € A, exprimer N(zx) en fonction de a,b € Z tels que x = a + by/2, et justifier que N(z) € Z.
c¢. Montrer que pour tous z,y € A, N(zy) = N(z)N(y).

3. Montrer que x € A est inversible dans A si et seulement si N(z) € {—1,1}.

On note : o A* ’ensemble des inversibles de A,
o Al = A*n]1,4+00] lensemble des inversibles z de A tels que z > 1.

4. a. Montrer que si x € Af, alors -1 <z < 1.

b. En déduire que oo = 1 + 1/2 est le plus petit élément de AT
5. Montrer que si z € AY, il existe un entier n € N* tel que o” < z <
6. En déduire que A7 = {a™, ne N*}.

7. Déterminer ’ensemble A*.

n+1

1. Montrons que A est un sous-anneau de (R, +, x).
— En choisissant a = 1 et b = 0, on constate que 1 = a + bv/2 € A.
— Siz,ye A, on peut écrire z = a + bv/2 et y = o’ + b'\/2, avec a,b,a’, b’ € Z. On a alors

t—y=a—ad +(b-b)V2e€ A et ab=ad +2bb +(ab +a'b)V2 € A.
e " & " "N
€Z €Z €Z €Z

Ainsi, A est stable par différence et par produit.
2. a. Supposons que x € A s'écrive © = a +bv/2 = o’ +b'\/2 avec a,a’,b,b’ € Z. On a alors a —a’ = (b —b)/2. Ainsi,
sib=10,0na+2= C;T—fb' € Q, et il y a contradiction. On a alors b = b, puis a = a’, d’ott I'unicité.
b. Pour 2 € A, si x = a + by/2 avec a,b € Z, alors on a N(z) = (a + bv/2)(a — by/2) = a* — 2b*> € Z.
¢. On considére z,y € A, qu’on écrit = a + bv/2 et y = ' + b'/2, avec a,a’,b,b’ € Z. On a alors

N(z)N(y) = (a® —2b°)(a”? — 2b™) = (aad’)? — 2(ab’)? — 2'a’b)* + 4(bb')>.

Donc N(zy) = N(aad’ +2bV + (ab’ + a'b)v/2) = (aa’ + 2bb')* — 2(ab’ + a'b)?
= (ad’)? + daa’bb’ + 4(bb)? — 2(ab')? — 4aa’bh’ — 2(a’b)?
= N(z)N(y).

3. Si xz € A est inversible, alors il existe y € A tel que zy = 1, donc N(z)N(y) = N(zy) = N(1) = 1. Par conséquent,
N(z) est inversible dans Z, et N(z) € {—1,1}.
Réciproquement, supposons N (z) € {—1,1}. Si N(z) = 1, alors 2Z = 1, et comme T € A, x est inversible d’inverse
Z. De méme, si N(x) = —1, alors 2% = —1, donc z(—Z) = 1, et x inversible dans A, d’inverse —Zz.
4. a. Size A, ona |zz| = |N(z)| = 1, donc |Z| = ‘i—‘ <1, du fait que || =2 > 1. On a bien -1 <z < 1.
b. Déja, 1 ++v2>1et N(1++/2) = —1donc 1++/2€ AJ.
Ensuite, on considére z € A et on note z = a + bv/2, avec a,b € Z, de sorte que T = a — bv/2.

— Comme z >1etZ > —1,0n a
a+bv2>1
a—bv2> -1
En additionnant, on trouve 2a > 0, donc a > 0.
— Comme a —byv/2 <1, on a —a + by/2 > —1, donc

a+bv2>1
—a+bv/2> -1
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En additionnant, on trouve 2b4/2 > 0, donc b > 0.

Comme a,b € Z, on en déduit que a > 1 et b > 1, ce qui donne = = a + bv/2 > 1 + +/2. On a donc bien montré
que 1 + /2 est le plus petit élément de A} .

+1 n+1)

5. On remarque que o < z < & se récrit In(a™) < Inz < In(a par stricte croissance de In, ou encore
nlna<lnz < (n+1)Ina. Comme a > 1, on a Ina > 0, donc l'inégalité se récrit encore :

n In
n < — < n+1, donc en posant n = 1T , on a bien I'inégalité.
Ina Ina

Par ailleurs, n > 1 car z > a, donc Inx > In a.

On peut aussi remarquer que o — 00, il existe n € N tel que Yk > n, of > x, donc il existe N tel que
Vk> N, o* > . nore

Ainsi, ’ensemble N' = {k € N, af < x} est borné par N et non vide car il contient 0, donc on peut poser n = max N,
ce sorte que o™ < x < Tl

6. Tout d’abord, comme (A, x) est un groupe, on a " € A* pour tout n € N. Par ailleurs, pour tout n € N*, on a
a™ > a > 1, donc @" € AY. On a montré {a™, ne N*} c Af.

"1 dont Pexistence est assurée par la question précédente. Par

Siz e A, on considére n € N tel que o" < z <
conséquent, on a
l1<za " <a.

Comme z et o~ " sont inversibles, za~" 'est aussi. Comme za™ < o = min Ay, on en déduit alors que za ™" ¢ AJ,

donc za™" < 1. Finalement, xa™"™ = 1, ce qui donne z = ", puis = € {a", n € N*}, d’ou 'autre inclusion.
b bl b b b

7. Onnote I = {+a", n € Z}. Comme A* est un groupe, les nombres de la forme @™ ou —a™ avec n € Z sont inversibles
dans A, donc [ < A*.
Réciproquement, si z € A*,
— siz €]l,+0[, on a vu que z € I, si = 1, c’est bien sir le cas également,
— si z €]0, 1[, alors i €]1, +00, donc on peut écrire % =a" avecn € N* doncx =a "€l

— siz €]—0,0[, alors —z €]0, + o[, donc on vient de voir qu’on peut écrire x = o™ avec n € Z, donc z = —a" € I.
. J

Exercice 4 - Interpolation de Lagrange et polynomes de Hilbert

A Dexception de la question 4, les deuz parties sont indépendantes.
Partie | — Interpolation de Lagrange

Dans cette partie, K désigne R ou C.

On considere n € N, xg,x1,...,x, € K deux a deux distincts, et yo,y1, . --,yn € K. On cherche a montrer qu’il existe
un unique polynome P € K,[X] tel que
vje[0,n], P(z;)=uy;. (1)

1. Unicité. On suppose que P,Q € K,[X] sont deux polyndmes tels que
Vje[0,n], P(z;)=Q(x;) = y;.
a. On note R = P — Q. Montrer que R € K, [X].
b. Conclure a I'unicité.

2. Euistence. Pour tout i € [0,n], on pose

Li _ n X—CL’k.
k=0 Ti — Tk
k=i
_ (X—z1)(X—w2) _ (X —z9)(X—m2) _ (X—z0)(X—m1)

A titre d’exemple, sin = 2, on a défini Ly o=z (mo=zs)’ 1= or=zo)(zi=za)’ Lo (=0 (ma—z1)

a. Justifier que pour tout ¢ € [0,n], le polyndéme L; est de degré n.
b. Pour tout ¢ € [0, n], calculer L;(z;). Pour j € [0,n] tel que i = j, calculer L;(x;).

c. En déduire que si P = )] y;L;, alors P vérifie (1).
i=0
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3. Montrer que pour tout polynéme P € K, [X],

Partie Il — Polyndmes stabilisant Q et Z
On s’intéresse dans cette partie aux polynémes P € C[X] stabilisant un ensemble K < C, c’est-a-dire que
Ve K, P(x) € K.

On note Q[X] l'ensemble des polynomes & coefficients dans Q, et Z[X] ’ensemble des polynémes & coefficients dans
7.

4. Cas K = Q. Montrer que pour tout P € C[X],
(VzeQ, P(x) e Q) « PeQX].

On pourra appliquer la question 3 d un polynéme P € C,[X] en choisissant xo =0, z1 =1, ..., z, = n.

5. Cas K = 7. Pour tout k € N*, on note

1 X(X—l)...(X—k—i—l)
TR H k! '
On note par ailleurs Hy = 1.
a. Montrer que pour tout n € Z,

0 si0<n<k-1

Hi(n) @) sin>k
(—1)k<k_”_1> sin <0

—-n—1

b. Soit k € N. Montrer que pour tout n > k,

n (z) (n + 1)
Z,Z: : k k+1
On pourra par exemple raisonner par récurrence.

c. En déduire que pour tous k,n € N,

Z Hy(i) = Hipyr(n+1).

d. Soient P € C[X] un polynéme non constant, et
Q = P(X +1) - P(X).
Exprimer deg P en fonction de deg Q).
e. Pour tout k € N*, exprimer P(k) — P(0) en fonction de Q(0),...,Q(k —1).

f- Montrer que les polynémes P € C[X] tels que Vz € Z, P(x) € Z sont exactement les polynémes de la forme

= i aiH
1=0

ol ag,...,0n € Z.

On pourra raisonner par récurrence sur le degré de P.

1. a. On adeg(P — Q) < max(deg P,deg Q) < n, car deg P < n et deg Q < n. Ainsi, P — Q € K, [X].

b. Comme P(x;) = Q(z;) pour tout ¢ € [0,n], le polynémes R = P — @ a pour racines o, . ..,Zn qui sont deux
a deux distincts. Ainsi, R est un polynome de degré au plus n qui a n + 1 racines, il est donc nul. On a bien
montré que P = @, d’ou 'unicité.
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2. a. Le polynéme L; est un produit de n polynémes de degré 1, il est donc de degré n.
b. On a Li(x;) = 1 et Li(z;) = 0.
c. Soit j € [0,n]. On a

Zyz (z;) = yiLj(z;) = yj-

3. Le polynéme Q = >}, P(x;)L; appartient & K,[X] comme somme de polynémes de K,[X], et vérifie Q(x;) = P(x;)
pour tout j € [0,n]. Comme nous avons montré 'unicité d’un tel polyndme, ceci entraine que P = Q.

4. Soit P € C[X] tel que pour tout € Q, P(x) € Q. Si P est nul, on a P € Q[X]. Sinon, on note n = deg P, et on
choisit z; = j pour tout j € [0,n], on a

= Z P(i)L;, et pour tout i€ [0,n], L H X : [X], donc P e Q[X].
i=0 0=

>

.0

Réciproquement, si P = Y] ar X" € Q[X], alors pour tout « € Q, on a P(x) = Z arz” € Q.
+1),

k=0
5. a Si0<n<k—1,alors n est racine de X(X —1)...(X —n)... (X donch():O.
. nn—1)...(n —k+1) n! n
=k, H = = = .
Sin 2k, Hiln) k! K-k \k
Sin < 0, on pose m = —n > 0, on a alors
Hu(n) = Hy(-m) = £ T](em—3) = 7 _ (cpplmAEoD.m gy (m k).
R R H N ! N ki(m — 1)!
Ainsi, Hy(n) = (=1)*("+277) = (D" (5).

b. On fixe k € N, et on raisonne par récurrence sur n.

“sin=kona 3 ()= () = (1) = (D

— Soit n = k. On suppose que Y, (;) = (ZE), on a alors
i—k

205000 - () (2) - (5)

par la relation de Pascal. Ceci acheve la récurrence.

c. Soient k,n € N.

n+1

~ Sin <k, alors pour tout i < n, on a i < k, donc Hg (i) = 0. Comme (7]

) = 0, ’égalité est vraie.

— Sin >k, on sait que pour tout i € [0,n], He(i) = (;) sit >k, et Hy(i) = 0 sinon

S = Y@ =3 (1) = ("FY) = Bt
k) T \k+1
i=0 i=k i=k

d’apres les questions précédentes.
d. Soit P € C[X] avec n = deg P > 1. On peut alors écrire P = a, X" +an_1 X" + P, avec P € C,_»[X]. Ainsi,

Q

an(X + D" +an 1 (X + D" 1+ P(X+1)—an X" —an_1 X" — P(X)
= an X"+ nan X" Pt an 1 X"+ —an X" —an 1 X"+ @(X)

ou Q est un polynéme de degré au plus n — 2, d’apres la formule du bindme de Newton, et car on a
deg P(X + 1) — P(z) < max(deg P(X + 1), P) < n + 2. Ainsi, comme Q = na, X" + Q et na, = 0, on
adeg@Q =n—1=degP — 1.

e. Par télescopage, on a pour k € N*,
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/- Déja, on sait par la question 5a que pour tout ¢ € N, on a : Vm € Z, H;(m) € Z. Par conséquent, si P est de la
forme Y7 ,a;H;, on a aussi Ym € Z, P(m) € Z.
Réciproquement, si P de degré n € N vérifie : Ym € Z, P(m) € Z, on montre par récurrence sur n que P est de
la forme ci-dessus.
— Sin =0, le polynébme P est constant, donc P = ag € Z, et P = aoHp.
— Soit n € N. On suppose que tout polyndéme @ de degré n tel que Vm € Z, Q(m) € Z s’écrit Y a;H; avec
ao, . . .,an € Z, et on considére un polynéme P de degré n + 1 tel que Ym € Z, P(m) € Z.

On a vu qu’alors Q = P(X + 1) — P(X) € C,[X], et, par hypothese de récurrence, il existe ag,...,an € Z
tels que Q@ = > ; a;H;. En utilisant la question précédente, on a alors pour tout k € N*,

PH) —PO) = 3, Q0) = 3, MaHiG) = Yo 3, HilG) = 3} acHira(h),

n+1 n+1
d’aprés 5c. Ainsi, pour tout k € N*, P(k) = P(0)Ho + >, a;,—1H;, et le polyndéme P — P(0)Ho + Y, ai—1H;
a une infinité de racines, donc il est nul. Ainsi, = =1

n+1
P = P(0)Ho + 2 a;—1H;, ce qui conclut.

i=1
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